Ларина Т.А., Абрамов С.П. и др. Руководство по инженерным изысканиям для строительства - файл n1.doc

приобрести
Ларина Т.А., Абрамов С.П. и др. Руководство по инженерным изысканиям для строительства
скачать (1324.5 kb.)
Доступные файлы (1):
n1.doc1325kb.08.07.2012 00:20скачать
Победи орков

Доступно в Google Play

n1.doc

1   2   3   4   5   6   7   8   9   10   ...   13

3.84. Скважины или другие горные выработки, предназначенные для гидрохимического опробования, рекомендуется располагать створами с достижением естественных или условных гидрогеологических границ водоносного горизонта, а также в направлениях возможного растекания сточных вод в водоносном горизонте. Число выработок на разведочных створах и расстояние между ними определяется длиной створа, принятой исходя из морфологических, геолого-литологических и гидрогеологических условий местности. В общем случае рекомендуются следующие расстояния, км, между выработками на этих створах: при длине створа до 1 км - 0,25 - 0,3; до 10 км - 0,5; св. 10 км - 1 - 2.

Скважины, предназначенные специально для изучения химического состава вод, бурятся всухую, без промывки. Отбор проб воды производится после прекращения бурения, установления уровня и осветления воды в скважине.

3.85. Отбор проб воды из скважины производится поинтервально с предварительной изоляцией опробуемого интервала от других. При небольшой мощности интервала пробы воды целесообразно отбирать из верхней ее части. Водоносные горизонты большой мощности и однородного литологического состава опробуются в верхней и нижней частях, при наличии в горизонте литологически неоднородных прослоев рекомендуется отбирать пробы из каждого водоносного прослоя.

В каждом створе разведочных скважин необходимо отбирать не менее трех проб на полный анализ с тем, чтобы результаты его могли охарактеризовать состав воды в верхней, средней и нижней частях горизонта.

3.86. Отбор проб из несамоизливающихся скважин необходимо производить, как правило, с помощью специальных пробоотборников, изготовленных из инертных материалов (синтетических полимеров). При наличии в изучаемой воде агрессивных компонентов по отношению к металлу и при повышенных ее кислотности (рН > 5) или щелочности (рН > 9) не рекомендуется использовать металлические пробоотборники. В этих случаях при неглубоком залегании и небольшой мощности (3 - 5 м) водоносного горизонта допускается отбор проб воды стеклянной бутылкой или полиэтиленовой колбой, спущенной с инертным грузом в скважину на шнуре из синтетического волокна.

Перечень компонентов и применяемых реагентов для консервации проб воды приведен в прил. 9.

В скважинах, предназначенных для проведения гидрохимического опробования, предусматривается поинтервальный отбор образцов пород на гранулометрический, спектрохимический и химический анализы. Образцы породы нарушенной структуры отбираются в полиэтиленовые мешочки. Отбор производится в соответствии с ГОСТ 9.015-74*. Интервалы отбора проб на расстоянии 0 - 0,5; 1 м и далее каждый метр, границы литологических разностей отбиваются соответствующей пробой.

3.87. Материалы гидрохимического опробования представляются в виде таблиц, графиков, а также в виде статистических расчетов, позволяющих более четко выявить тенденцию к изменению химического режима наблюдаемых водоносных горизонтов. Отчетным документом гидрохимического опробования должны быть:

заключение о рациональном выборе места строительства накопителя отходов производств;

заключение о необходимости экранирования его;

программа наблюдений за химическим режимом подземных вод в процессе эксплуатации сооружений с обоснованием числа наблюдательных точек и их размещения на исследуемой площади.

3.88 (3.17). Отбор образцов грунтов из горных выработок и естественных обнажений, а также их упаковку и доставку в лаборатории следует производить в соответствии с требованиями ГОСТ 12071-72 «Грунты. Отбор, упаковка, транспортирование, хранение образцов».

Таблица 13

Задачи исследований

Геофизические методы

основные

вспомогательные

Определение строения массива

 

 

Определение рельефа поверхности скальных оснований и мерзлых грунтов (установление мощности рыхлых и талых перекрывающих пород)

Вертикальное электрическое зондирование (ВЭЗ)1; метод преломленных волн (МПВ); электропрофилирование (ЭП) методом кажущегося сопротивления (ЭП КС) и методом двух составляющих (ЭП МДС)

ВЭЗ по методу двух составляющих (ВЭЗ МДС); по методу вызванной поляризации; частотное электромагнитное зондирование (ЧЭМЗ); дипольно-электромагнитное профилирование (ДЭМП); метод отраженных волн (MOB); гравиразведка

Расчленение разреза. Установление достаточно протяженных границ и глубины их залегания в скальных, песчаных, глинистых и мерзлых грунтах:

 

 

мощность коры выветривания

МПВ; ВЭЗ

ВЭЗ МДС; ЭП; ЧЭМЗ

положение литологических границ

ВЭЗ; МПВ, акустический каротаж (АК); каротаж сопротивления (КС); гамма-каротаж (ГК); гамма-гамма-каротаж (ГГК)

вертикальное сейсмическое профилирование (ВСП); нейтронный каротаж (НК); геозвуколокация (на акваториях) (ЗГЛ);

уровень грунтовых вод

МПВ; ВЭЗ

ВЭЗ ВП

Определение местоположения, глубины залегания и формы локальных неоднородностей:

 

ЭП; ВЭЗ ВП

зоны трещиноватости и тектонических нарушений

ЭП КС; ЭП МДС; МПВ; расходометрия; резистивиметрия; КС; АК

Метод естественного электрического поля (ПС); метод вызванной поляризации (ВП); ВЭЗ МДС; эманационная съемка; магниторазведка; акустическое и радиоволновое просвечивание; радиокип; ДЭМП; терморазведка; метод вычитания полей (МВП)

карстовые полости и подземные выработки

ЭП КС; ЭП МДС; расходометрия; резистивиметрия

МВП; ВСП; акустическо-радиоволновое просвечивание, гравиразведка; ДЭМП, сейсмопросвечивание

погребенные останцы и локальные переуглубления в скальном основании

ЭП КС; ЭП МДС; ВЭЗ МДС; гравиразведка; магниторазведка

льдов и сильнольдистых пород

ЭП КС; ЭП МДС; ВЭЗ МДС; МПВ; НК; ГГК; КС

ВП; ДЭМП; термометрия; микромагнитная съемка; АК

линзы соленых и пресных вод

ЭП КС; ЭП МДС; ВЭЗ; МПВ; резистивиметрия

ВЭЗ МДС; ВЭЗ ВП; расходометрия; ЧЭМЗ

межмерзлотных вод и таликов

ЭП КС; ЭП МДС; МПВ; термометрия

ПС; ВП

Изучение физико-механических свойств грунтов

 

 

Изучение физико-механических свойств скальных грунтов:

 

 

пористости и трещиноватости, статического модуля упругости, модуля деформации, временного сопротивления одноосному сжатию, коэффициента отпора, напряженного состояния

ГГК; НК; сейсмоакустические (МПВ, сейсмическое и акустическое просвечивание, ВСП, АК, лабораторные измерения)

ВЭЗ; ВЭЗ МДС; боковое каротажное зондирование (БКЗ)

Изучение физико-механических свойств песчаных и глинистых грунтов:

 

 

влажности, объемной массы, пористости

ГГК; НК; ВЭЗ; БКЗ

МПВ; АК; КС; лабораторные измерения удельных электрических сопротивлений (УЭС) и акустические измерения удельных электрических сопротивлений (УЭС) и акустические измерения

коэффициента сцепления, угла внутреннего трения, модуля деформации

-

Сейсмоакустические методы

коррозионной активности

ВЭЗ; ЭП; резистивиметрия

ПС; лабораторные измерения УЭС

Изучение физико-механических свойств песчаных и глинистых мерзлых грунтов:

 

 

литологического состава, влажности, льдистости, пористости, объемной массы, временного сопротивления одноосному сжатию

Сейсмоакустические; ВЭЗ; ГГК; НК; термометрия

-

Изучение современных геологических и инженерно-геологических процессов:

 

 

динамики уровня грунтовых вод

Стационарные наблюдения: ВЭЗ; МПВ

-

направления, скорости течения и места разгрузки подземных вод

Резистивиметрия; расходометрия; метод заряженного тела (МЗТ); ПС; ВЭЗ

Термометрия

изменения влажности глинистых и лессовых грунтов

ВЭЗ; НК; ВП

ПС; термометрия

загрязнения подземных вод

ВЭЗ; резистивиметрия; ВП

ПС

изменения напряженного состояния и уплотнения грунтов

Сейсмоакустические; ГГК; НК; ЭП; ВЭЗ; БКЗ

-

изменения мощности слоя протаивания, температуры и свойств мерзлых грунтов

Сейсмоакустические;

ПС; ЧЭМЗ

ВЭЗ; ЭП МДС; термометрия; ГГК; НК

-

Сейсмическое районирование территорий

Сейсмоакустические; ГГК; регистрация слабых землетрясений и взрывов

Регистрация сильных землетрясений

1 Вертикальное электрическое зондирование симметричной установкой рекомендуется применять, если границы выдержаны по простиранию и имеют углы падения относительно дневной поверхности не более 10°. Во всех остальных случаях рекомендуется применять вертикальное электрическое зондирование методом двух составляющих двусторонними трехэлектродными или дипольными установками.

3.89. В ГОСТ 12071-72 сформулированы основные требования, выполнение которых исключает возможность отбора недоброкачественных образцов грунтов.

Однако в ГОСТе не изложены все те технические приемы, способы и методы, которые позволяют осуществить отбор высококачественных образцов и монолитов из горных выработок и главным образом буровых скважин. По этой причине изыскательским организациям в своей практической деятельности кроме указанного стандарта полезно руководствоваться «Рекомендациями по отбору, упаковке, транспортированию и хранению образцов грунтов при инженерно-геологических изысканиях для строительства». М., «Стройиздат», 1970.

3.90 (3.18). Для определения агрессивного воздействия и коррозийной активности подземных вод - среды по отношению к материалам строительных конструкций - пробы воды на химический анализ необходимо отбирать в соответствии с требованиями ГОСТ 9.015-74* «Единая система защиты от коррозии и старения. Подземные сооружения. Общие технические требования» и главы СНиП по проектированию защиты строительных конструкций от коррозии.

3.91. При наличии грунтовых и поверхностных вод, агрессивных по отношению к материалам фундаментов или других заглубленных конструкций, обязательна оценка агрессивности этих вод (прил. 10).

Под материалами строительных конструкций следует понимать бетон, сталь, алюминиевые и свинцовые оболочки кабелей, по отношению к которым определяется агрессивность и коррозионная активность грунтовых вод.

3.92. Требования к отбору, хранению и транспортированию проб воды хозяйственно-питьевого и промышленного водоснабжения приведены в ГОСТ 4979-49.

3.93 (3.19). Геофизические исследования при съемке должны выполняться в целях выявления неоднородности строения толщи грунтов, их состава, состояния и условий залегания, выявления тектонических нарушений и закарстованных зон, а также условий залегания подземных вод. Выбор метода (комплекса методов) геофизических исследований следует производить согласно прил. 4 (11).

3.94. При планировании геофизических работ необходимо ставить задачи, решение которых в определенных конкретных условиях возможно одним, или комплексом методов.

Выбор метода или комплекса методов осуществляется в соответствии с требованиями прил. 4 к главе СНиП II-9-78 и табл. 13 (см. стр. 73 - 76), являющейся модификацией прил. 11 (4).

3.95. Геофизические работы следует начинать с выполнения параметрических замеров удельных электросопротивлений и скоростей прохождения упругих волн по характерным для площадки съемки образцам пород, а также выполнения исследований у опорных скважин и обнажений, что необходимо для правильной и однозначной геологической интерпретации результатов последующих работ.

Перед началом работ методом электропрофилирования (ЭП) на отдельных точках должно быть поставлено вертикальное электрическое зондирование (ВЭЗ).

3.96. Обработка материалов геофизических исследований и их геологическая интерпретация должны вестись оперативно с целью своевременного использования полученных результатов в работе съемочных групп. При затруднениях в интерпретации по заданию геофизика на характерных участках должны быть пройдены горные выработки или буровые скважины.

По результатам выполненных работ строятся:

карты электросопротивлений;

геоэлектрические разрезы;

карты типов кривых ВЭЗ;

сейсмогеологические разрезы;

карты граничных скоростей;

другие карты и разрезы, соответствующие решению поставленной задачи.

3.97. В практике исследования мерзлых грунтов применение геофизических методов особенно целесообразно в районах со сложными мерзлотными условиями: широким распространением таликов, резкими колебаниями мощности мерзлых грунтов, наличием подземных льдов и др. Среди геофизических методов наибольшее значение имеет термометрия. С ее помощью определяются температура и характер распределения грунтов по разрезу, а также мощность вечномерзлых грунтов. Для измерения температуры применяются ртутные срочные заленивленные термометры и термометры сопротивления. Термозамеры должны производиться в выстоявшихся скважинах, время выстойки которых зависит от глубины скважины, способа ее проходки (с промывкой или всухую), температуры грунтов. Рекомендуемые интервалы между точками измерений в скважинах, м, следующие:

При глубине от устья скважины  0 - 5 м                        0,5

»        »        »     »             »          5 - 10 м                      1

При глубине от устья скважины  10 - 25 м                    2

»        »        »     »             »          25 - 50 м                    5

3.98 (3.20). Выбор методов полевых исследований свойств грунтов при инженерно-геологической съемке необходимо производить согласно прил. 5 (13). При этом для уточнения геологического разреза песчано-глинистых грунтов, выявления и оконтуривания линз и прослоев слабых грунтов и установления закономерностей изменчивости физико-механических свойств грунтов по площади и глубине следует широко использовать статическое и динамическое зондирование.

3.99. При инженерно-геологической съемке предпочтение следует отдавать менее трудоемким полевым методам исследования грунтов, позволяющим помимо определения их свойств решать и другие задачи, стоящие перед изыскателями. Этому условию в наибольшей степени отвечают методы статического, динамического, ударно-вибрационного зондирования, а также пенетрационно-каротажные методы, характеризующиеся простотой производства работ, высокой производительностью и сравнительно низкой стоимостью.

3.100. По результатам статического зондирования и работ, выполненных пенетрационно-каротажными методами, решаются следующие задачи:

устанавливаются закономерности изменчивости физико-механических свойств грунтов по площади и глубине;

уточняется геологический разрез и выделяются инженерно-геологические элементы;

определяется глубина залегания кровли скальных и крупнообломочных грунтов;

выявляются и оконтуриваются линзы и прослои слабых грунтов;

производится количественная оценка ряда свойств грунтов (плотности, показателей сопротивления срезу, модуля деформации);

определяются глубина залегания кровли несущего слоя для свай и их несущая способность;

выбираются места расположения опытных («ключевых») площадок для детального изучения физико-механических свойств грунтов при инженерно-геологической разведке.

С помощью динамического и ударно-вибрационного зондирования может быть проведена лишь качественная оценка физико-механических свойств грунтов.

3.101. Для обеспечения достоверного решения всех перечисленных задач зондировочные и пенетрационно-каротажные работы следует производить в комплексе с другими методами изучения геологического разреза и определения физико-механических свойств грунтов по следующей технологической схеме:

первые точки зондирования следует располагать на расстоянии 1,5 - 2 м от ранее пробуренных опорных скважин, что обеспечит сопоставление результатов зондирования с изученным геологическим разрезом и достоверную геологическую интерпретацию результатов последующих зондировочных работ;

все другие точки зондирования размещаются по створам, ориентированным по направлениям выполненных маршрутов с учетом результатов проведенных наблюдений; после выполнения зондировочных работ проводится предварительная интерпретация полученных результатов и ориентировочно выделяются инженерно-геологические элементы; в местах, где интерпретация результатов зондирования затруднена или невозможна, назначаются дополнительные буровые скважины;

для наиболее характерных инженерно-геологических элементов, выделенных по результатам зондирования, назначаются точки определения физико-механических свойств грунтов прямыми полевыми методами (статические нагрузки на штамп, прессиометрия, сдвиги целиков грунта и т.д.);

по завершении буровых работ и единичных определений свойств грунтов указанными методами производится окончательная интерпретация результатов зондирования.

3.102. В районах распространения слабых глинистых грунтов, отбор монолитов которых для лабораторных определений их физико-механических свойств практически невозможен, статическое зондирование грунтов следует производить в комплексе с методом вращательного среза и статическими нагрузками на штамп площадью 10000 см2.

3.103. Основные характеристики физико-механических свойств крупнообломочных грунтов (гранулометрического состава, объемной массы, модуля деформации, показателей сопротивления сдвигу) необходимо определять только полевыми методами.

3.104. Для определения фильтрационных характеристик грунтов зоны аэрации следует использовать метод налива воды в шурфы, а водонасыщенных грунтов - помимо экспресс-методов применять метод откачки воды из одиночных скважин. Фильтрационные характеристики должны определяться для наиболее характерных разностей грунтов в единичных случаях.

3.105. Опытное замачивание котлованов, испытания свай, а также определение напряженного состояния массива грунтов или порового давления в состав инженерно-геологической съемки включать не следует.

3.106 (3.21). В процессе инженерно-геологической съемки следует при необходимости оборудовать сеть постов, станций, пунктов и др. для стационарных наблюдений за динамикой развития физико-геологических процессов и явлений, режимом уровня и химического состава подземных вод, температурой грунтов и подземных вод.

3.107. В процессе инженерно-геологической съемки следует установить или уточнить места, выбранные при проведении рекогносцировочных работ, для постановки стационарных наблюдений за геологическими компонентами природной среды (режимом уровня и химического состава подземных вод, температурой грунтов и воды, динамикой развития физико-геологических процессов и т.п.) и организовать их регулярное проведение на соответствующим образом оборудованных постах, станциях или сетях.

3.108. Стационарные наблюдения должны проводиться в течение всего времени производства съемочных работ, а при необходимости продолжаться на последующих этапах изысканий, в процессе строительства и при эксплуатации зданий и сооружений.

3.109. Срочность наблюдений за каждым компонентом природной среды необходимо обосновывать в программе изысканий в зависимости от его режима или динамики с учетом требований соответствующих общесоюзных нормативных документов Госстроя СССР, Минводхоза СССР, Мингеологии СССР.

3.110. Стационарные наблюдения за оползнями проводятся при необходимости изучения динамики и механизма процесса с целью последующего прогнозирования оползневой деятельности. В их составе проводятся инструментальные геодезические наблюдения за планово-высотным положением реперов (марок); полуинструментальные наблюдения за деформациями маяков; наблюдения за режимом подземных вод на оползневых склонах и т.д. Полный состав и методика проведения наблюдений изложены в специальных методических руководствах (например, «Методическое руководство по стационарному изучению оползней». М., Госгеолтехиздат, 1956).

3.111. Стационарные мерзлотные наблюдения проводятся при необходимости изучения динамики процессов, происходящих при сезонном и многолетнем промерзании - оттаивании грунтов в естественных и нарушенных условиях. Стационарные наблюдения являются составной частью работ по инженерно-геологической съемке, и организуются для решения практических задач, связанных, главным образом, с прогнозом изменения мерзлотных условий при строительстве и воздействием физико-геологических процессов на инженерные сооружения. Объектами стационарных наблюдений, в первую очередь, являются:

термический режим грунтов;

динамика слоев сезонного промерзания - протаивания;

пучение и осадка грунтов;

водный режим грунтов;

динамика снежного покрова;

динамика физико-геологических криогенных и посткриогенных процессов (термокарста, солифлюкции, термоэрозии, сезонных и многолетних бугров пучения).

3.112. Наблюдения проводятся на наблюдательных площадках, выбор которых определяется их назначением. Часть площадок выбирается на участках, в пределах которых сохранены естественные условия с характерными для данного ландшафтного типа рельефом, литологическим составом пород, растительностью. Для определения изменения процессов промерзания - протаивания в нарушенных условиях на части площадок нарушают естественные условия теплообмена удалением растительного покрова, уплотнением или очисткой снега, устройством искусственных покрытий и др.

Поскольку с глубиной амплитуда колебания температуры затухает, частота наблюдений, точность замеров и величина интервалов, через которые рационально измерять температуру, могут быть различны (см. п. 3.97).

3.113. Для прогноза изменения уровня грунтовых вод на застраиваемых территориях в процессе стационарных гидрогеологических наблюдений должны быть изучены:

естественный и нарушенный режим грунтовых вод и подземных вод второго от поверхности (под местным или региональным водоупором) водоносного горизонта в случае, если между ними установлена или предполагается взаимосвязь;

взаимосвязь между поверхностными и подземными водами.

3.114. Наблюдательные пункты стационарной сети для незастроенной территории размещаются по створам от водораздела к дренам на всех геоморфологических элементах.

При однородном строении первого от поверхности водоносного горизонта на каждом геоморфологическом элементе предусматривается заложение как минимум двух-трех наблюдательных скважин. При неоднородном (в плане) строении водоносного горизонта число скважин увеличивается с учетом изучения основных литологических разностей водовмещающих пород, отличающихся фильтрационными свойствами.

При наличии верховодки или слоистом строении водоносного горизонта закладываются кусты скважин с фильтрами, установленными в каждом водоносном прослое. Для изучения движения влаги в зоне аэрации организуются балансовые площадки. Места расположения наблюдательных пунктов желательно приближать к существующим или проектируемым гидрометеорологическим постам.

3.115. При размещении наблюдательных пунктов стационарной сети на застроенных территориях следует руководствоваться принципами размещения пунктов для незастроенных территорий, а также учитывать характер застроенности территории и степень ее инженерной подготовки, организацию строительных работ, установленный или предполагаемый характер изменения гидрогеологических условий.

В условиях действующего подтапливаемого промышленного предприятия размещение наблюдательной сети и балансовых площадок должно осуществляться в соответствии с «Рекомендациями по изучению режима и баланса грунтовых вод на подтапливаемых промышленных площадках» ВОДГЕО и ПНИИИС Госстроя СССР, изд. 1973.

3.116. Стационарная сеть на застроенных территориях должна включать:

одиночные скважины, расположенные по створам от водоразделов к дренам;

сеть скважин на расстоянии 150 - 500 м друг от друга, которая сгущается вблизи водонесущих коммуникаций и сооружений;

кусты скважин с фильтрами, расположенными на разных водоносных горизонтах или по глубине потока при неоднородном строении водоносного пласта;

расчетные балансовые створы скважин для расчета гидрогеологических параметров и составления баланса грунтовых вод;

балансовые участки для изучения движения влаги в зоне аэрации.

3.117. Изучение режима химического состава подземных вод производится с целью:

оценки изменений во времени агрессивности подземных вод;

составления прогноза возможного засоления земель в результате их мелиорации;

определения возможного ухудшения качества подземных вод, используемых для водоснабжения, в результате их искусственного загрязнения или подсоса соленых вод из других водоносных горизонтов или из моря;

изучения условий формирования подземных вод (их питания, разгрузки) и, в частности, для оценки влияния строительства на изменение водного солевого баланса подземных вод освоенных и осваиваемых территорий и т.д.

В зависимости от целей исследований и гидрогеологических условий состав и методика наблюдений за режимом химического состава подземных вод могут быть весьма различны.

Основным видом химического анализа при таких исследованиях является сокращенный анализ, предусматривающий определение следующих ионов: Cl-, SO42-, НСО3-, CO32-, Mg2+, Na+ + K+, Fe2+ + Fe3+, NO3-, NO2-, NH4+, а также рН, жесткости, физических свойств и сухого остатка.

3.118. Наблюдения за режимом подземных вод лучше всего производить на оборудованных для этой цели скважинах или источниках. Конструкция скважин определяется гидрогеологическими условиями изучаемой территории. Скважины могут быть пробурены любым способом. При бурении с глинистым раствором их рекомендуется тщательно очистить и промыть путем прокачек или откачек. При бурении и рыхлых осадочных породах скважины обсаживаются. Диаметр скважины должен быть не менее 75 мм, что позволит производить замеры переносными и стационарными приборами и осуществлять периодическую чистку от заиливания. При оборудовании наблюдательных скважин рекомендуется соблюдать следующие условия:

для предотвращения попадания атмосферных осадков в водоносный горизонт по затрубному пространству площадка вокруг устья скважины должна быть зацементирована или утрамбована глиной;

при организации наблюдений за режимом межпластовых вод все вышележащие водоносные горизонты должны быть надежно изолированы, а качество этой изоляции проверено откачкой;

фильтры устанавливаются в зависимости от гранулометрического состава и степени трещиноватости пород водоносного горизонта;

фильтр следует устанавливать на такую глубину, чтобы он не осушался даже при самом низком положении уровня грунтовых вод. С целью послойного изучения химического состава грунтовых вод, а также для изучения закономерностей изменений режима уровня, температуры и химического состава грунтовых вод с глубиной в тех случаях, когда это необходимо, организуются кусты наблюдательных скважин с ярусно расположенными фильтрами (на различных глубинах);

устье скважины и верх обсадной трубы (или патрубка), выступающей над поверхностью земли, от которой производятся замеры, должны быть занивелированы. Должны быть определены абсолютная отметка устья скважины и ее координаты. Все эти данные заносятся в паспорт наблюдательной скважины.

1   2   3   4   5   6   7   8   9   10   ...   13


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации