Стройк Д.Я. Краткий очерк истории математики - файл n1.doc

приобрести
Стройк Д.Я. Краткий очерк истории математики
скачать (7559 kb.)
Доступные файлы (1):
n1.doc7559kb.07.07.2012 02:51скачать

n1.doc

  1   2   3   4   5   6   7   8   9   ...   12


Д.Я. Cmpoйk
КРАТКИЙ ОЧЕРК

ИСТОРИИ

МАТЕМАТИКИ
5–Е ИЗДАНИЕ, ИСПРАВЛЕННОЕ

Перевод с немецкого И. Б. ПОГРЕБЫССКОГО



МОСКВА «НАУКА»

ГЛАВНАЯ РЕДАКЦИЯ

ФИЗИКОМАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ

1990


ББК 22.1г

С86

УДК 51(091)



ABRISS DER GESCHICHTE

DER MATHEMATIK
VON DIRK J. STRUIK
VEB DEUTSCHER VERLAQ

DER WISSENSCHAFTEN

BERLIN 1963



С т р о й к Д. Я. Краткий очерк истории математики. Пер. с нем.—5- изд., испр.— М.: Наука. Гл. ред. физ.мат. лит., 1990.— 256 с. ISBN 5-02-014329-4.

Книга известного голландского математика и историка математики Д. Стройка является одной из лучших в мировой математической литературе, в ней живым, образным языком изложена история математики от зарождения этой науки до конца 19го столетия. 4е изд.— 1984 г.

Для преподавателей математики, студентов университетов и педагогических институтов, лиц, интересующихся математикой, ее историей и историей науки вообще.


 «Наука». Физматлит, перевод на русский язык, 1990
С1602010000117 3290

053 (02) 90
ISBN 5020143294

Предисловие ОСR-редактора

История математики, как свидетельствует практика, мало интересует самих математиков, а философы недостаточно математически подкованы, чтобы чувствовать себя здесь уверенно. Книга Стройка частично восполняет лакуну в Интернет-контенте данной области.

Книга была отсканирована и отредактирована в конце марта 2005 (вплоть до 4.04.2005). Я придерживался принципа отображения «страница-в-страницу», т.е. порядковый номер страницы оригинала совпадает номером, вставляемым Вордом. Некоторые формулы были набраны вручную, списки литературы сверялись в незначительной степени, поэтому они изобилуют опечатками (у меня не хватило сил их править, равно как и изменять в подстрочнике апостроф на единицу).

Matigor, mivmiv_@aport.ru

ПРЕДИСЛОВИЕ

КО ВТОРОМУ РУССКОМУ ИЗДАНИЮ

«Краткий очерк истории математики» известного голландского математика и историка науки Д. Я. Стройка не нуждается в особых рекомендациях. С 1948 г., когда эта книга появилась на английском языке, она вышла в переводе на польский (двумя изданиями), украинский, немецкий (четырьмя изданиями), венгерский, китайский, японский и чешский языки; потребовались и два новых английских издания книги. В очень скромном объеме автор дал последовательное и живое изложение основных фактов, событий, идейных направлений многовековой истории математики от ее зарождения до начала двадцатого столетия, все это — с учетом движущих сил общественного развития в целом. Принципиальные установки автора с достаточной четкостью сформулированы в его предисловии к немецкому изданию, а также в предисловии, написанном им для русского издания. Среди выдвигаемых Д. Я. Стройком положений есть и спорные, но несомненно, что его книга не догматична, она будит мысль н вполне соответствует современному состоянию истории науки.

Перевод сделан с учетом немецких изданий, в которые автор внес ряд изменений и дополнений. В соответствии с пожеланиями автора и издательства переводчик добавил несколько параграфов по истории математики в России1) (эти параграфы отмечены звездочкой), а также значительно пополнил библиографию и снабдил примечаниями некоторые места авторского текста. Эти примечания имеют свою нумерацию и обозначены числами в квадратных скобках.

И. Погребысский

') Пятое издание печатается без добавлений переводчика.— Примеч. редакции

ПРЕДИСЛОВИЕ

АВТОРА К РУССКОМУ ИЗДАНИЮ
Впервые эта история математики появилась в 1948 г. (изд. Dover Company в НьюЙорке). В предшествовавшие годы я время от времени читал курсы лекций по истории естествознания и математики в Массачусетском технологическом институте, и первый такой курс был прочитан по предложению профессора Тайлера (Harry W. Tyler), известного как соавтор, вместе с Седжвиком (W. T. Sedgwick), учебника по истории естествознания (1917 г.), одной из первых книг такого рода в США. А мое первое знакомство с историей естествознания состоялось в годы, когда я был студентом Лейденского университета, где Вольграф (J. A. Vollgraf) читал лекции небольшой студенческой аудитории, — тот самый др Вольграф, который вложил столько добросовестного и самоотверженного труда в издание собрания сочинений Гюйгенса. Но понастоящему я заинтересовался историей математики во время пребывания в Италии в 1924— 1925 гг., когда Бортолотти (Etlore Bortolotti) познакомил меня со своими исследованиями о болонских алгебраистах шестнадцатого века. Этот интерес усилился благодаря встречам в Риме с Энриквесом (F. Enriques) и Вакка (G. Vacca), авторами замечательных работ по истории науки. Там же я встретился с Джино Лориа (Gino Loria). На классической почве Италии нетрудно заинтересоваться историей нашего научного наследия.

С самого начала я понял, что история математики — не только история развития понятий, но одна из частей истории человеческой деятельности, в которой отражается борьба человека с природой, притом не абстрактного человека, а человека как члена общества. Однако большинство историков математики рассматривают ее почти исключительно как историю идей, понятий, переходящих от

одного математика к другому, который их далее развивает. Галилей повлиял на Кавальери, Кавальери — на Торричелли, Торричелли — на Паскаля, Паскаль — на Лейбница, а Лейбниц — на братьев Бернулли. Эти историки лишь при случае упоминают о том или ином важном политическом или религиозном событии — таком, как завоевания Александра Македонского или распространение ислама,— влияние которого на развитие математики столь велико, что игнорировать его нельзя. Этот метод односторонен, но не ошибочен — он выявляет важные этапы в истории математики. Но при этом не выясняется, что существует тесная зависимость между математикой и общекультурными устремлениями эпохи, устремлениями, которые сами отражают, непосредственно или опосредствованно, преобладающие общественные и экономические условия.

Важным примером является деятельность алгебраистов шестнадцатого столетия. Эти математики Возрождения были участниками общего культурного движения, заодно они были творческими медиками, архитекторами, живописцами, гражданскими и военными инженерами, были и купцами; бурное развитие больших и могущественных торговых городов вдохновляло их деятельность. Ранний меркантилизм дал нам не только новую теорию алгебраических уравнений, но и новую науку о перспективе.

Часто мы вынуждены ограничиваться только историей идей, в частности, при рассмотрении эпох, когда трудно собрать или истолковать данные социальноэкономического характера, как в случае древней Индии. Однако мы можем утверждать, что, вообще говоря, важные направления математического творчества (или отсутствие такового) можно понять только в связи, косвенной или непосредственной, с социальноэкономическими условиями. Такой гений, как Ньютон, может прокладывать новые пути в математике и механике только тогда, когда есть в обществе классы, готовые поддерживать и ободрять его, готовые создать ему условия для работы и для того, чтобы быть услышанным. Характер греческой математики, как доэллинистической, так и эллинистической, можно понять только при условии учета того, каким было древнее средиземноморское общество — общество, где благодаря рабству мог существовать класс располагавших досугом людей,— причем в восточных областях существовал контакт с общественными формами, основанными на

ирригационном земледелии. Столь же верно, что возникновение в семнадцатом столетии современной математики можно понять лишь с учетом того, что в то время в экономической жизни Западной Европы капиталистические общественные формы начинают брать верх над отступающим феодализмом. Такие же обстоятельства надо учитывать, если мы пытаемся найти ответ на вопрос, почему Китай, где многие столетия наука и техника развивались на уровне Европы или превосходя его, не принял участия в революции Галилея — Декарта,— проблема, которой много занимался Нидхем (Needham). Понимание природы современного капиталистического, а теперь и социалистического промышленного общества необходимо, чтобы уяснить себе направление, в котором математика развивалась за последние сто пятьдесят лет. Влияние общественноэкономических факторов на это развитие обычно не было непосредственным. Факторы эти влияли чаще через физику, географию, навигацию или даже архитектуру, живопись, религию и философию. Важные математические исследования редко бывают прямым результатом общественного воздействия, в них нет ничего утилитарного. Харди (G.Н. Hardy) както заметил, что «настоящая» математика «настоящих» математиков, математика Ферма и Эйлера, математика Гаусса, Абеля и Римана почти полностью «бесполезна» с точки зрения практического использования. Но суть дела не в этом (хотя удивительно много из этой «бесполезной» математики прошлого стало практически «полезным» в наш век вычислений, космических полетов, автоматизации и вообще научной технологии). Мы должны стараться понять, каким образом общество влияет на точные науки, и это часто значительно углубляет наше понимание направлений, господствующих в этих науках. Конечно, верно, что общество, в котором развиваются университеты, поддерживает форму научной деятельности, когда можно жить в мире собственных идей. Но этот мир идей является своеобразным выражением нужд или тенденций эпохи — достаточно вспомнить о том, как теория групп объединила несколько различных областей математики, ранее развивавшихся почти независимо. Подобное явление в области чистой мысли было следствием огромного объема геометрических исследований в годы, последовавшие за французской революцией, и связанного с этим революционизирования математической мысли. Роль Гаусса в математике можно сравнить с ролью Ге

геля в философии, Бетховена в музыке, Гёте в литературе. А разве Галуа не был воистину сыном французской революции?

Весьма поучительный пример того, как нематематические факторы стимулируют математические изыскания, Представляют поиски метода определения долготы судна, длившиеся три столетия, начиная с путешествий Васко да Гама и Колумба. В период воинствующего меркантилизма эти поиски преследовали вполне практическую цель — обеспечить безопасность океанских плаваний. Правительства, академии и частные лица поощряли занятия проблемой определения долгот почестями, пожертвованиями и премиями. Одним из мотивов при создании Лондонского Королевского общества и Парижской академии наук была необходимость решить эту насущную проблему. В поисках ее решений были усовершенствованы навигационные приборы и часы, исследовано движение Луны и спутников Юпитера. Математика выиграла при этом благодаря исследованиям Гюйгенса о маятниковых часах и Ньютона о задаче двух тел (напомним об очерке Б. Гессена о Ньютоне, 1931г.). В свою очередь труды Ньютона привели Эйлера к исследованию движения Луны как одного из случаев задачи трех тел. Нужды картографии вызвали к жизни математические теории Меркатора и Ламберта. Гук, экспериментируя с пружинными стопорами, заложил основы теории упругости, а Галлей, проводя опыты в Атлантике, стал основателем теории земного магнетизма. Все эти исследования по картографии, навигации, механике и астрономии оплодотворили математику этой эпохи, в частности анализ. Это влияние было и непосредственным, и опосредствованным: механистическая философия тех дней охотно пользовалась часами как моделью вселенной и рассматривала математику, как ключ к постижению своих проблем. Как известно, проблема долгот была в конце концов решена, когда изобрели хронометр и создали удовлетворительную теорию Луны.

Однако никогда мы не должны забывать, что сами идеи способны порождать новые идеи. Немало математических открытий было сделано в области отвлеченной мысли, когда какойнибудь мыслитель оказывал влияние на своих коллег или учеников. В том, что математику описывают как постепенное развитие идей, то непрерывное, то скачкообразное, есть большая доля истины. Обозначения тоже имеют определенное значение: замена




прежних обозначений лучшими создает новую форму для создания новых идей. Хотя историки математики не пользуются гегелевской терминологией, развитие математики вполне можно описать в терминах Гегеля: сложение положительных целых чисел отрицается в вычитании, а оно в свою очередь отрицается на высшем уровне арифметики, когда вводятся как положительные, так и отрицательные числа. Можно пользоваться, описывая математические открытия, такими терминами диалектики, как «объективизация» и «отчуждение», хотя я не советовал бы это делать. Таким образом можно превратить историю математики, рассматриваемую только как история идей, в новую и специализированную «феноменологию духа», в феноменологию ума, и компетентный автор смог бы воздвигнуть своими руками великолепный дворец мысли. «Философия математики» Германа Вейля иногда напоминает мне такую феноменологию, будучи сходна с гегелевской и в отдельных уступках материалистическому мировоззрению.

Все же такой подход к истории математики, при всей своей привлекательности, остается односторонним, а порой даже дезориентирует. Мы должны всегда помнить, что математические понятия — не произвольные творения ума, а отражение реального, объективного мира, пусть часто в весьма абстрактном виде. Это объясняет, почему математики различных эпох могли понимать друг друга, почему теоретическая математика может стать прикладной математикой и почему прикладная математика может выражать законы механики, физики, даже законы некоторых областей биологии и экономической науки. Это объясняет также, почему возможна материалистическая диалектика математики, на что указывал Фридрих Энгельс. Поэтому историк математики должен действовать осмотрительно, учитывая свободу математического творчества в создании своих собственных понятий и в то же время сознавая, что эти понятия могут иметь ценность в ходе дальнейшего развития математики лишь при условии, что они выражают какуюто зависимость, какуюто закономерность реального мира, мира чувственных восприятий, в котором человек живет как существо общественное.

Позволю себе закончить это введение замечанием другого рода. Преподавание истории математики окажется пустой тратой времени, если студенты из-за языковых трудностей не смогут читать тексты в оригинале, оказав

шись в полной зависимости от того, что узнают из вторых илп третьих рук. Это все равно что изучать историю английской литературы, не будучи в состоянии читать Шекспира, или историю русской литературы, не читая Пушкина. Это является помехой особенно в Соединенных Штатах, где студентам часто трудно читать на какомлибо языке, кроме английского, но такие трудности должны быть и в других странах, особенно когда дело доходит до латинских текстов. Греческие математики не причиняют затруднений, так как главные авторы — Евклид, Архимед, Диофант — имеются в превосходных переводах на многие языки, хотя и здесь есть существенные пробелы (например, повидимому, нет английского перевода Паппа). Такое затруднение можно преодолеть лишь при услввии, что все большее число классиков таких, как Кеплер, Лейбниц, Эйлер, Лагранж, будет доступно в дешевых изданиях их переводов с необходимыми комментариями. Такую работу надо вести систематически, а не от случая к случаю, в зависимости от прихоти того или иного переводчика. Тем временем известную помощь может оказать собрание текстов, доступных в переводах. Мною уже был опубликован список переводов на английский язык (Scripta Mathematica.— 1949.— V. 15.— P. 115—131), и список этот убедительно показывает, насколько несистематически ведется эта работа.

Я признателен профессору А. П. Юшкевичу за его интерес к моей работе, что содействовало ее переводу на русский язык. Ценность этой книги возросла благодаря добавлению сведений по истории математики в России.
Д. Стройк
Массачусетский технологический институт

Кембридж, штат Массачусетс

17 декабря 1962 г.

ПРЕДИСЛОВИЕ АВТОРА К НЕМЕЦКОМУ ИЗДАНИЮ
Математика — широкое поприще идей, и ее история знакомит нас с некоторыми из благороднейших помыслов неисчислимых поколений. Можно было сжать эту историю до объема книги меньше, чем в триста страниц, только подчиняясь суровому требованию — давать очерк развития немногих основных идей и сводить к минимуму описание других направлений. Биографии сведены к наброскам, многие достаточно важные авторы, например Гоберваль, Ламберт, Шварц, опущены. Но, быть может, наибольший ущерб причинен неполнотой описания общей культурной и общественной атмосферы, в которой формировалось (или затухало) развитие математики в ту или иную эпоху. На математику оказывали влияние земледелие, торговля и промышленность, военное дело, инженерное дело и философия, физика и астрономия. Влияние гидродинамики на теорию функций, влияние кантианства и землемерия на геометрию, электромагнетизма — на теорию дифференциальных уравнений, картезианства — на механику и схоластики — на математический анализ — обо всем этом можно было сказать лишь несколько фраз или, пожалуй, несколько слов. Между тем добиться понимания хода развития и содержания математики можно лишь при учете всех этих определяющих факторов. Ссылка на литературу нередко заменяет исторический анализ. И наша история заканчивается 1900-м годом, так как современная математика — настолько многосторонняя наука, что невозможно — по крайней мере для автора этой книги — дать компетентную оценку хотя бы ее основных направлений1).

') См в связи с этим Weyl H. A. Halfcentury of Malhematics / Amer. Math. Monthly.—1951.—V. 58.—P. 523—553.

Все же я надеюсь, что, несмотря на такие ограничения удалось дать вполне добросовестное описание главных направлений, по которым в течение веков шло развитие математики, и тех общественных и культурных условий, в которых оно происходило. Конечно, отбор материала не был обусловлен только объективными факторами — сказывались симпатии и антипатии автора, степень его осведомленности.

Что касается последнего, надо сказать, что не всегда автор мог непосредственно опираться на источники, слишком часто приходилось пользоваться источниками из вторых и даже третьих рук. Поэтому следует посоветовать (что относится не только к этой книге, но и ко всем исследованиям такого рода) по возможности проверять утверждения автора, обращаясь к оригиналам. По многим причинам это является правильным положением. При изучении таких авторов, как Евклид, Диофант, Декарт, Лаплас, Гаусс или Риман, не следует ограничиваться только цитатами из исторических книг, в которых описаны их труды. В подлинниках Евклида и Гаусса содержится такая же живительная сила, как и в подлинниках Шекспира; у Архимеда, у Ферма, у Якоби можно найти столь же великолепные места, как у Горация или Эмерсона ').

В число положений, которыми руководствовался автор при изложении материала, входили следующие четыре:

1. Подчеркивать связи и родство восточных цивилизаций, а не исходить из механического разбиения на египетскую, вавилонскую, китайскую, индийскую и арабскую культуры.

2. Проводить различие между установленными фактами, гипотезами и преданиями, особенно в греческой математике.

3. Связать два течения в математике Возрождения, арифметикоалгебраическое и «флюкционное», с торговыми и техническими запросами эпохи соответственно.

4. Строить изложение математики девятнадцатого столетия больше по лицам и школам, чем по предметам. (Здесь в качестве основного руководства можно было принять книгу Клейна «Лекции о развитии математики в XIX столетии».) Изложение по отдельным дисциплинам дают книги Кеджори и Белла, а с большим числом тех

1) Эмерсон Ралф Уолдо (1803—1882) — известный американский критик, поэт и моралист.

нических подробностей — немецкая «Энциклопедия математических наук» (Enzyklopadie der mathematischen Wissenschaften, 24 тома, Лейпциг, 1898—1935) и Repertorium der hoheren Analysis (5 томов, Лейпциг, 1910—1929) Паскаля (Pascal).

Автор выражает свою благодарность О. Нейгебауеру, который охотно согласился прочесть первые главы книги, что дало возможность во многих местах улучшить изложение. Профессору А. П. Юшкевичу автор обязан многими улучшениями при изложении науки стран ислама.

Во втором английском издании исправлены многие опечатки и ошибки, имевшиеся в первом издании. Автор благодарен Р. Арчибалду (R. С. Archibald), Э. Дейкстерхойсу (Е. J. Dijksterhuis), С. Иоффе (S. A. Joffe) и другим читателям книги, благодаря вниманию которых эти погрешности были обнаружены. В немецкое издание были внесены новые исправления.
Д. Стройк

ВВОДНЫЙ ОБЗОР ЛИТЕРАТУРЫ
Ниже приводится список ряда важнейших книг по истории, математики в целом. В этом списке не нуждаются те читатели, которые могут воспользоваться книгой Sarton G. The Study of the History of Mathematics.— Cambridge, 1936, содержащей не только интересное введение в наш предмет, по и полную библиографию. Данные о более поздней литературе можно найти в соответствующих отделах реферативных журналов по математике: Jahrbuch iiber die Fortschritte der gesamten Malhematik (нем.), Mathematical Reviews (амер.), Zentralblatt ftir Mathemalik (нем.) и реферативный журнал «Математика» (изд. Института научной информации АН СССР, с 1953 г.).

Работы советских ученых по истории математики приведены в библиографических указателях: История естествознания. Литература, опубликованная в СССР (1917—1947).— М., 1949; История естествознания. Литература, опубликованная в СССР (1948— 1958).— М., 1955. Полезна также книга Библиографические источники по математике и механике, изданные в СССР за 1917—1952 гг.—М.; Л., 1957. Кроме того, см. Зубов В.П. Историография естественных наук в России.— М., 1956.

Книги на английском языке:

Archibald R. С. Outline of the History of Mathematics.— 6th ed.— Amer. Math. Montrly.— Jan. 1949.— № 561.

Эта книга в 114 с. дает прекрасный очерк истории математики и содержит много библиографических указаний.

Cajori F. A. History of Mathematics.—2nd ed.— N. Y., 1938. Это образцовая книга в 514 с.

Smith D. Е. History of Mathematics. V. I.— Boston, 1923. V. II. Boston, 1925.

Автор книги ограничился в основном изложением истории элементарной математики, но приводит данные о всех выдающихся математиках и многочисленные иллюстрации, новые издания— 1951 — 1953, 1958.

Bell E. Т. Men of Mathematics.—N. Y., 1937.

Bell E. T. The Development of Mathematics.—2nd ed.—N. Y.; London, 1945.

Эти две книги содержат обширный материал как о математиках, так и об их достижениях. Вторая книга посвящена главным образом математике XIX—XX вв.

Scott J. F. A History of Mathematics from Antiquity to the Beginning of the Nineteenth Century.— London, 1958.

Тurnbull H. W. The Great Mathematicians.— London. 1929. Новое изд. N. Y., 1961.

Преимущественно элементарная математика рассматривается в книгах:

Sanford V. A. Short History of Mathematics.— Boston, 1930.

Rouse Ball W. VV. A Short Account of the History of Mathematics.— 6th ed.— London, 1915; переиздана в 1960 г.

Хорошо написанная, но устаревшая книга.

Eves H. An Introduction to the History of Mathematics.N. Y., 1953.

Интересный материал собран в книге Сajогi F.A. History of Mathematical Notations. V. I.— Chicago, 1928. V. II. Chicago, 1929.

Образцовой книгой по истории математики все еще остается

Cantor M. Vorlesungen fiber Geschichte der Mathematik.— Bd 1—4.— Leipzig, 1900–1908.

Эта работа большого масштаба (четвертый том написан группой специалистов под общим руководством М. Кантора) охватывает историю математики до 1799 г. Во многих местах она устарела, особенно в разделах об античной математике, во многих частностях она ошибочна, но, как и раньше, она хороша для первой ориентировки.

Поправки к ней Эиестрема (G. Enestrom) и др. публиковались в журнале Bibliotheca Mathematica.

Другие книги на немецком языке:

Zeuthen H. G. Geschichle der Mathematik im Alterlum und Mittelalter.— Kopenhagen, 1896 (французское издание — Paris, 1902; первое датское издание вышло в

1893 г., в 1949 г. появилось второе датское издание, переработанное О. Нейгебауером, русский перевод (с нем. издания): Цейтен Г. Г. История математики в древности и в средние века.— 2е изд.— М.; Л.: ГОНТИ, 1938).

Zeuthen H. G. Geschichte der Mathematik im 16 und 17. Jahrhundert.—Leipzig, 1903; русский перевод: Цейт.ен Г. Г. История математики в XVI и XVII столетиях. 2-е изд. М.; Л.: ГОНТИ, 1938.

Giinther S., Wieleitner H. Geschichte der Mathematik.— Bd 1—2 (первый том написан Гюнтером, издано Вилейтнером).— Berlin, 1939. Написанная Вилейтнером часть вошла в русское издание: Вилейтнер Г. История математики от Декарта до середины XIX столетия.— М.: Физматгиз, 1960. 2е изд.— М.: Наука, 1966.

Tropfke J. Geschichte der Elmentarmathematik.— 2 Aufl. Bd 1–7. Leipzig, 1921-1924. 3 Aufl.— Bd 1 — 4. Leipzig, 1930-1940.

Первая часть первого тома переведена на русский язык: Тропфке И. Арифметика.— М., 1914.

В издание: Die Kultur der Gegenwart III, I.— Leipzig; Berlin, 1912 вошли работы:

Zeuthen H. G. Die Mathematik im Altertum und im Mittelalter; Voss A. Die Beziehungen der Mathematik zur allgemeinen Kultur; Timerding H. E. Verbreitung mathematischen Wissens und mathematischer Auffassung.

Becker O., Hofmann J. E. Geschichte der Mathematik.— Bonn, 1951.

Hofmann J. E. Geschichte der Mathematik.— Bd 1— 3.— Собрание Goschen.— Bd 226, 875, 882, Berlin, 1953— 1957.

Эти книги содержат подробный указатель литературы.

Becker О. Grundlagen der Mathematik in geschichtlicher Entwicklung.— Freiburg; Miinchen, 1954.

Немецкий перевод книги А. П. Юшкевича (см. ниже) является ее вторым, улучшенным изданием.

Старейшая книга по истории математики на французском языке

Montucla J. E. Historie des mathematiques.— T. 1— 4.— Paris, 1799—1802. Первое издание, в двух томах, появилось в 1758 г. Труд, где рассматривается прикладная математика, и сейчас представляет интерес.

Весьма интересна книга, выпущенная под коллективным псевдонимом группы современных математиков,

Bourbaki, Nicolas. Elements d'histoire des mathematiques.— Paris, 1961.

Всю историю математики охватывают соответствующие главы большого коллективного труда

Hisloire generale des Sciences.— Т. 1—3.— Paris, 1960—1964, под общей редакцией профессора Татона (R. Taton).

Укажем также:

D'Oсagne M. Histoire abregee des Sciences mathematiques/Ouvrage recueilli et acheve par R. Dugas.— Paris, 1952.

Книга дает краткие очерки об ученых. Dedron I., Itard J. Mathematiques et mathematiciens.— Paris, 1919.

На итальянском языке есть хорошая книга: Loria G. Storia delle mathematiche.— T. 1—3.— Torino, 1929—1933. См. также Bortolotti E. Storia della matematica elementare.— T. 3.— Milano, 1950.— P. 2. . Кроме того, укажем:

Caruccio E. Mathematica e logica nella storia e nel pensiero contemporaneo.— Torino, 1958.

Книги на русском языке:

Кольман Э. Я. История математики в древности.— М.; Физматгиз, 1961.

Юшкевич А. П. История математики в средние века.— М.: Физматгиз, 1961.

Рыбников К. А. История математики.— Т. I.— М., 1960. Т. II.— М., 1963.

Шереметьевский В. П. Очерки по истории математики.— М., 1940.

Гнеденко Б. В. Очерки по истории математики в России.— М.; Л.: Гостехиздат, 1946.

Юшкевич А. П. История математики в России до 1917 г.— М.: Наука, 1968.

Б у р б а к и Н. Очррки по истории математики/Перевод с франц. И. Г. Башмаковой под ред. К. А. Рыбникова, М.: ИЛ, 1963.

История отечественной математики /Отв. ред. И. 3. Штокало. Т. I.— Киев, 1966. Т. П.— Киев, 1967. Т. III.— Киев, 1968. Т. IV (в двух книгах).— Киев, 1970. В первых двух томах изложение доведено до 1917 г., третий и четвертый тома посвящены советскому периоду. История математики с древнейших времен до начала XIX столетия/Под ред. А. П. Юшкевича, Т. I: С древнейших времен до начала нового времени.— М.: Наука,

1970. Т. II: Математика XVII столетия.— М.: Наука, 1970 Т. III: Математика XVIII столетия.— М.: Наука, 1970.

Имеются также историко-математические антологии;

Smith D. E. A Source Book iu Mathematics.—N. Y., 1929.

Wieleitner A. Mathemalische Quellenbucher.— Bd 1—4.— Berlin, 1927—1929; русский перевод; Вилейтнер Г. Хрестоматия по истории математики, составленная по первоисточникам, вып. 1—4.— М.; Л.: ГТТИ, 1932. 2е изд. М.; Л.: ОНТИ, 1935.

Speiser A. Klassische Sliicke dor Malhematik.— Zurich; Leipzig, 1925.

Newmann I. R. The World of Mathematics.— V. 1— 4. N. Y., 1956.

Это сборник очерков о математике и о математиках.

Полезна также книга:

Callandier E. Celebres problemes mathematiques.— Paris, 1949.

Имеются также книги по истории отдельных дисциплин. Мы укажем следующие работы.

Dickson L. E. History of the Theory of Numbers.— V. 13.Washington, 19191927.

Muir T. The Theory of Determinants in the Historical Order of Development.—V. 1—4.—London, 1906—1923; Contributions to the History of Determinants 1900—1920.— London, 1930.

von Braunmuhl A. Vorlesungen uber Geschichte der Trigonomentrie. Bd 1.— Leipzig, 1900. Bd 2,— Leipzig, 1903.

Dantzig T. Number, The Language of Science.— 3rd ed.—N. Y., 1943.

Coolidge J. L. A History of Geometrical Methods.— Oxford. 1940.

Loria G. II passato e il presente delle principal! teorie geometriche.— 4 ed.— Torino, 1931.

Loria G. Storia della geometria descrittiva delle origine sino ai giorni nostri.— Milano, 1921.

Loria G. Curve piani special! algebriche e transcendenti.— T. 1—2.— Milano, 1930; нем. изд., Bd 1.— Leipzig, 1910; Bd 2. Leipzig, 1911.

Cajori F. A History of Mathematical Notations. V. 1.— Chicago, 1928. V. 2.— Chicago, 1929.

Karpinski L. C. The History of Arithmetic. — Chicago, 1925.

Walker H. W. Studies in the History of Statistical Methods.— Baltimore, 1929.

Reiff R. Geschichte der unendlichen Reihen,— Tubingen, 1889.

Todhunter I. History of the Progress of the Calculus of Variations during the Nineteenth Century.— Cambridge, 1861.

Todhunter I. History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace.— Cambridge, 1865.

Todhunter I. History of the Mathematical Theory of Attraction and the Figure of Earth from the Time of Newton to that of Laplace.— London, 1873.

Coolidge J. L. The Mathematics of Great Amateurs.— Oxford, 1949.

Archibald R. C. Mathematical Tables Makers.— N. Y., 1948.

Dugas R. Histoire de la mecanigue.—Neufchatel, 1950.

Воуer C. History of Analytic Geometry.— N. Y., 1956.

Воуer C. History of the Calculus and its Conceptual Development.— N. Y., 1949, 1959.

Beth E. W. Geschiedenis der logica.— Haag, 1944.

Из книг на русском языке по истории отдельных дисциплин укажем:

Тимченко И. Ю. Основания теории аналитических функций, ч. I: Исторические сведения о развитии понятий и методов, лежащих в основании теории аналитических функций.— Одесса, 1899; также в «Записках матем. отделения Новороссийского общества естествоисп.»— Одесса, 1892. Т. 12; 1896. Т. 16; 1899. Т. 19.

В этой книге собран огромный материал по истории развития основных понятий анализа.

Каган В. Ф. Исторический очерк развития учения об основаниях геометрии.— Одесса, 1907; также в «Записках Новороссийского университета».— Одесса, 1907.— Т. 108 и 109. Каган В. Ф. Основания геометрии, ч. I.— М.; Л.: Гостехиздат, 1949.

Васильев А. В. Целое число. Исторический очерк.— Пг., 1919, 1922.

Кеджори Ф. История элементарной математики/ Перевод с англ, и дополнения И. Ю. Тимченко.— 2е изд.— Одесса, 1917.

Беллюстин В. Как постепенно дошли люди до настоящей арифметики.— М., 1940.

Маркушевич А. И,. Очерки по истории теории аналитических функций.— М.; Л.: Гостехиздат, 1951.

Деимаи И. Я. История арифметики.— М., 1959.

Медведев Ф. А. Развитие теории множесгв в XIXвеке. М., 1965.

Паплаускас А. Б. Тригонометрические ряды от Эйлера до Лебега.— М., 1966.

Песин И. Н. Развитие понятия интеграла.— М.,1966.

Майстров Л. Е. Теория вероятностей. Исторический очерк.— М., 1967.

См. также литературу в конце каждой главы.

История математики излагается и в книгах по общей истории науки. Образцовым трудом является Sarton G. Introduction to the History of Science.— V. 1—5.— Washington; Baltimore, 1927—1948.

Изложение доведено до четырнадцатого столетия. В нашей книге транскрипция греческих и восточных имен дается, в основном, по Сартону.

Дополнением к пяти томам Сартона является книга Sarton G. The Study of the History of Science, with an Introductory Bibliography.— Cambridge, 1936').

Хорошая книга для школ:

Sedgwick W. Г., Tyler H. W. A Short History of Science. 2nd ed N. Y., 1939.

Влияние математики на культуру рассматривается в книге: Kline M. Mathematics in Western Culture.— N. Y., 1953.

Полезны также десять статей Миллера (G. A. Miller) : A first Lesson in the History of Mathematics, A second Lesson и т. д. в «National Mathematics Magazine», (с 1939. V. 13 до 1945. V. 19).

Периодические издания по истории математики или по истории естествознания в целом и т. п.:

Bibliotheca mathemalica, серии 1—3 (1884—1914).

Scripta mathematica (с 1932).

Isis (с 1913).

Revue d'histoire des sciences (c 1947).

Archives internationales d'histoire des sciences (c 1947).

Centaurus (c 1950).

NTM. Z. f. Geschichte der Naturwissenschaften, Technik und Medizin (c 1960).

') См. также книгу Сартона, указанную на с. 13.

Archiv fur Geschichte der Mathematik, der Naturwisscnschaflen und der Technik (1909—1931).

Physis (c 1959).

Archive for History of Exact Sciences (c 1960).

Mitteilungen zur Geschichte der Medizin, Naturwissenschaft und Technik (Referatenorgan, с 1961).

Вопросы истории естествознания и техники (с 1956),

Историко-математические исследования (с 1948).

См. также Труды Института истории естествознания АН СССР, тт. I—IV, 1947—1952, и продолжение этого издания под названием Труды Института истории естествознания и техники АН СССР, 1954—1962 (по истории физикоматематических наук, т. 1, 5, 10, 15, 17, 19, 22, 28, 34, 43).



Глава I

НАЧАЛО
1. Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века — палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом — собиранием ее, где только это было возможно. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки. Возможно, рисунки в пещерах Франции и Испании (давности порядка 15 тысяч лет) имели ритуальное значение, но несомненно в них обнаруживается замечательное чувство формы.

Пока не произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит.

Это великое событие в истории человечества произошло примерно десять тысяч лет тому назад, когда ледяной покров в Европе и Азии начал таять и уступать место лесам и пустыням. Постепенно прекращались кочевые странствия в поисках пищи. Рыболовы и охотники все больше вытеснялись первобытными земледельцами. Такие земледельцы, оставаясь на одном месте, пока почва сохраняла плодородие, строили жилища, рассчитанный на более долгие сроки. Стали возникать деревни для защитй от непогоды и от врагов-хищников. Немало таких нео

литических поселений раскопано. По их остаткам видно, как постепенно развивались такие простейшие ремесла, нак гончарное, ткацкое и плотничье. Существовали житницы, так что население могло, производя излишки, запасать продукты на зиму и на случай неурожая. Выпекали хлеб, варили пиво, в эпоху позднего неолита плавили и обрабатывали медь и бронзу. Совершались открытия, были изобретены гончарный круг и тележное колесо, совершенствовались лодки и жилища. Все эти замечательные новшества возникали лишь в пределах той или иной зоны и не всегда распространялись вне ее. Например, американские индейцы узнали о существовании тележного колеса лишь после прихода белых. Тем ие менее теми технического прогресса в колоссальной мере ускорился по сравнению с древним каменным веком.

Деревни вели между собой значительную торговлю, которая настолько развилась, что можно проследить наличие торговых связей между областями, удаленными на сотни километров друг от друга. Эту коммерческую деятельность сильно стимулировали открытие техники выплавки меди и бронзы и изготовление сначала медных, а затем бронзовых орудий и оружия. Это в свою очередь содействовало дальнейшему формированию языков. Слова этих языков выражали вполне конкретные вещи и весьма немногочисленные абстрактные понятия, но языки уже имели известный запас слов для простых числовых терминов и для некоторых пространственных образов. На таком уровне находились многие племена в Австралии, Америке и Африке, когда они впервые встретились с белыми людьми, а некоторые племена и сейчас живут в таких условиях, так что есть возможность изучить их обычаи и способы выражения мыслей.

2. Числовые термины, выражающие некоторые из «наиболее абстрактных понятий, какие в состоянии создать человеческий ум», как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, «какимто»— «какойто» скорее, чем «один человек») и двумя и многими. Древнее качественное происхождение числовых понятий и сейчас еще выявляется в тех особых двоичных терминах, которые имеются в некоторых языках, как, например, в греческом и кельтском. С расширением понятия числа большие числа сначала образовывались с

помощью сложения: 3 путем сложения 2 и 1, 4 путем сложения 2 и 2, 5 путем сложения 2 и 3.

Вот примеры счета некоторых австралийских племен:

Племя реки Муррей: 1 = энэа, 2 = петчевал, 3 = петчевалэнэа, 4 = петчевалпетчевал.

Камиларои: 1 = мал, 2 = булан, 3 = гулиба, 4 = буланбулан, 5 = булангулиба, 6 = гулибагулиба').

Развитие ремесла и торговли содействовало кристаллизации понятия числа. Числа группировали и объединяли в большие единицы, обычно пользуясь пальцами одной руки или обеих рук — обычный в торговле прием. Это вело к счету сначала с основанием пять, потом с основанием десять, который дополнялся сложением, а иногда вычитанием, так что двенадцать воспринималось как 10+2, а девять — как 10 — 12). Иногда за основу принимали 20 — число пальцев на руках и ногах. Из 307 систем счисления первобытных американских народов, исследованных Илсом (W. С. Eels), 146 были десятичными, 106 — пятичными и пятичнымидесятичными, остальные — двадцатичными и пятичнодвадцатнчными. В наиболее характерной форме система с основанием двадцать существовала у майя в Мексике и у кельтов в Европе. Числовые записи велись с помощью пучков, зарубок на палках, узлов на веревках, камешков или ракушек, сложенных по пять в кучки,— приемами, весьма схожими с теми, к каким в давние времена прибегал хозяин постоялого двора, пользовавшийся бирками. Для перехода от таких приемов к специальным символам для 5, 10, 20 и т. д. надо было сделать лишь один шаг, и именно такие символы мы обнаруживаем в пользовании в начале писанной истории, на так называемой заре цивилизации.

Древнейший пример пользования бирками приходится на эпоху палеолита. Это — обнаруженная в 1937 г. в Вестонице (Моравия) лучевая кость молодого волка длиной около 17 сантиметров с 55 глубокими зарубками. Первые двадцать пять зарубок размещены группами по пять, за ними идет зарубка двойной длины, заканчивающая этот ряд, а затем с новой зарубки двойной длины

') Con ant L. The Number Concept.—N. Y., 1896.—P. 106— 107, с многими подобными примерами; см. также статью И. Г. Башмаковой и А. П. Юшкевича, указанную в библиографии в конце этой главы.

2) Eels W. С. Number Systems of North American Indians // Amer. Math. Monthly— 1913.— V. 20.— P. 293.

начинается новый ряд из зарубок1). Итак, очевидно, что неправильно старое утверждение, которое мы находим у Якоба Гримма и которое часто повторяли, будто счет возник как счет на пальцах. Пальцевый счет, то есть счет пятками и десятками, возник только на известной ступени общественного развития. Но раз до этого дошли, появилась возможность выражать числа в системе счисления, что позволяло образовывать большие числа. Так возникла примитивная разновидность арифметики. Четырнадцать выражали как 10 + 4, иногда как 15 — 1. Умножение зародилось тогда, когда 20 выразили не как 10 + + 10, а как 2 X 10. Подобные двоичные действия выполнялись в течение тысячелетий, представляя собой нечто среднее между сложением и умножением, в частности в Египте и в доарийской культуре МохенджоДаро на Инде. Деление началось с того, что 10 стали выражать как «половину тела», хотя сознательное применение дробей оставалось крайне редким явлением. Например, у североамериканских племен известны только немногие случаи применения дробей, и почти всегда это только дробь Ѕ, хотя иногда встречаются 1/3 и ј 2).

Любопытно, что увлекались очень большими числами, к чему, может быть, побуждало общечеловеческое желание преувеличить численность стада или убитых врагов; пережитки такого уклона заметны в библии и в других религиозных книгах.

[i] Происхождение и развитие счета вообще, систем счисления в частности, и связанное с этим развитие понятия натурального числа изложены Д. Стройном крайне кратко. Большой этнографический, археологический и филологический материал, который приходится привлекать при таких исследованиях, не позволяет дать вполне определенные ответы на все вопросы, но некоторые этапы

') Isis, 1938 —V. 28.—Р. 462—463; взято из London News IHustr. от 2.Х 1937. [См. также данные о предметах, найденных при раскопках палеолитической стоянки в Меяине (Черниговской области УССР), в книге: История отечественной математики, т. 1, с. 40.— Примеч. пер ]

2) Миллер (G. A. Miller) обратил внимание на то, что слова one half, semis, moitie, обозначающие (в английском, латинском, французском языках) половину, не имеют прямой связи со словами тех же языков, означающими 2 (two, duo, deux), в отличие 1/3, ј, ...(англ.: one third, one fourth, ...); это, видимо, указывает на то, что понятие Ѕ возникло независимо от понятия целого числа. См. Nat. Math. Magazine, 1939.—V. 13.—P. 272, 24

и некоторые общие черты в развитии техники счета и понятия числа можно установить с высокой степенью достоверности. На русском языке этот круг проблем наиболее обстоятельно и вместе с тем компактно освещен в статье И. Г. Башмаковой и А. П. Юшкевича (см. библиографию в конце главы I). Интересные данные, указывающие па более раннее развитие числовых представлений (чем до сих пор предполагалось), собраны в статье: Фролов Б. А. Применение счета в палеолите и вопрос об истоках математики // Изв. СО АН СССР, сер. общ. наук.— 1965.— № 9, вып. 3.
  1   2   3   4   5   6   7   8   9   ...   12


КРАТКИЙ ОЧЕРК
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации