Лекция - Фильтры сглаживания сигналов. Метод наименьших квадратов (МНК) - файл n1.doc

Лекция - Фильтры сглаживания сигналов. Метод наименьших квадратов (МНК)
скачать (260.5 kb.)
Доступные файлы (1):
n1.doc261kb.29.05.2012 22:02скачать

n1.doc

  1   2


ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signals processing

Тема 3. ФИЛЬТРЫ СГЛАЖИВАНИЯ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

Не перестаю удивляться дерзкой гениальности Стефенсона и братьев Черепановых. Как они отважились построить паровоз, не располагая теорией его движения?

Архив Кифы Васильевича. Наука и жизнь, 1984.

Пока нет теории, есть возможность войти в Историю. Бог прославился созданием Евы из ребра Адама без всякого теоретического обоснования. А когда теория есть, можно только влипнуть в какую-нибудь историю.

Лариса Ратушная. Уральский геофизик, XX в.
Содержание

Введение.

1. Фильтры МНК 1-го порядка. Расчет коэффициентов фильтра. Импульсная реакция фильтра. Частотная характеристика фильтра. Модификация фильтра. Оптимизация сглаживания.

2. Фильтры МНК 2-го порядка. Расчет фильтров. Частотные характеристики фильтров. Модификация фильтров.

3. Фильтры МНК 4-го порядка.

4. Расчет простого цифрового фильтра по частотной характеристике.

Введение

Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – спектральный (частотный) анализ. Частотный анализ базируется на использовании периодических функций, в отличие от численных методов анализа и математической статистики, где предпочтение отдается полиномам. В качестве периодических используются гармонические функции синусов и косинусов. Спектральный состав сигналов – это тонкая внутренняя структура данных, которая практически скрыта в динамическом представлении данных даже для опытных обработчиков. Частотная характеристика цифрового фильтра – это его однозначный функциональный паспорт, полностью определяющий сущность преобразования фильтром входных данных.

Следует отметить, что хотя цель фильтрации сигналов состоит именно в направленном изменении частотного состава данных, которые несет сигнал, у начинающих специалистов существует определенное эмоциональное противодействие частотному подходу в анализе данных. Преодолеть это противодействие можно только одним путем – на опыте убедиться в эффективности частотного подхода.

Рассмотрим пример частотного анализа фильтров при сглаживании данных методом наименьших квадратов (МНК).

3.1. фильтры мнк 1-го порядка [24].

Предположим, что требуется осуществить сглаживание (регуляризацию, аппроксимацию) равномерного по аргументу массива данных методом наименьших квадратов (МНК).

Расчет коэффициентов фильтра. Простейший способ аппроксимации по МНК произвольной функции s(t) - с помощью полинома первой степени, т.е. функции вида y(t) = A+Bt (метод скользящих средних). Произведем расчет симметричного фильтра МНК на (2N+1) точек с окном от -N до N.

Для определения коэффициентов полинома найдем минимум функции остаточных ошибок приближения. С учетом дискретности данных по точкам tn = nt и принимая t = 1, для симметричного НЦФ с нумерацией отсчетов по n от центра окна фильтра (в системе координат фильтра), функция остаточных ошибок записывается в форме:

(A, B) = [sn - (A+B·n)]2.

Дифференцируем функцию остаточных ошибок по аргументам А, В, и, приравнивая полученные уравнения нулю, формируем 2 нормальных уравнения с двумя неизвестными:

(sn-(A+B·n)) sn - A1 - Bn = 0,

(sn-(A+B·n))·n nsn - An - Bn2 = 0.

С учетом равенства n = 0, решение данных уравнений относительно А и В:

А = sn , B =nsn /n2.

Подставляем значения коэффициентов в уравнение аппроксимирующего полинома, переходим в систему координат по точкам k массива y(k+) = A+B·, где отсчет  производится от точки k массива, против которой находится точка n = 0 фильтра, и получаем в общей форме уравнение фильтра аппроксимации:

y(k+) = sk-n + nsk-n /n2.

Для сглаживающего НЦФ вычисления производятся непосредственно для точки k в центре окна фильтра (= 0), при этом:

yk = sk-n. (3.1.1)




Рис. 3.1.1.
Импульсная реакция фильтра соответственно определяется (2N+1) значениями коэффициентов bn = 1/(2N+1). Так, для 5-ти точечного НЦФ:

h(n) = {0.2, 0.2, 0.2, 0.2, 0.2}.

Передаточная функция фильтра в z-области:

H(z) = 0.2(z-2+z-1+1+z1+z2).

Коэффициент усиления дисперсии шумов:

Kq = n h2(n) = 1/(2N+1),

т.е. обратно пропорционален ширине окна фильтра. Зависимость значения Kq от ширины окна приведена на рис. 3.1.1.

Частотная характеристика фильтра (передаточная функция фильтра в частотной области) находится преобразованием Фурье импульсной реакции h(n) (фильтр симметричный, начало координат в центре фильтра), или подстановкой z = exp(-jt) при t=1 в выражение передаточной функции H(z). И в том, и в другом случае получаем:

H() = 0.2[exp(2j)+exp(j)+1+exp(-j)+exp(-2j)]. (3.1.2)

Можно использовать и непосредственно уравнение фильтра (3.1.1). Подадим на вход фильтра гармонический сигнал вида sk = exp(jk). Так как сигнальная функция относится к числу собственных, на выходе фильтра будем иметь сигнал yk = H()exp(jk). Подставляя выражения входного и выходного сигналов в уравнение (3.1.1), получаем:

H() exp(jk) = 0.2exp(j(k-n))= 0.2 exp(jk) exp(-jn).

Отсюда, выражение для передаточной функции:

H() = 0.2exp(-jn) = 0.2[exp(2j)+exp(j)+1+exp(-j)+exp(-2j)],

что полностью идентично выражению (3.1.2).

Так как импульсная реакция фильтра МНК симметрична (функция h(n) четная), частотное представление передаточной функции должно быть вещественным, в чем нетрудно убедиться, объединив комплексно сопряженные члены выражения (3.1.2):

H() = 0.2(1+2 cos +2 cos 2).

Альтернативное представление передаточной функции H() фильтра с произвольным количеством коэффициентов 2N+1 достаточно хорошо известно, как нормированный фурье-образ прямоугольной функции, каковой по существу и является селектирующее окно фильтра (3.1.1):

H() = sin((N+1/2))/[(N+1/2)] = sinc((N+1/2)). (3.1.3)




Рис. 3.1.2. Сглаживающие фильтры МНК-1.
Графики передаточных функций (3.1.3) приведены на рисунке 3.1.2. По графикам можно видеть коэффициент передачи сигнала с входа на выход фильтра на любой частоте. Без ослабления (с коэффициентом передачи 1) сглаживающим фильтром пропускается (и должен пропускаться по физическому смыслу сглаживания данных) только сигнал постоянного уровня (нулевой частоты). Этим же определяется и тот факт (следует запомнить), что сумма коэффициентов сглаживающего НЦФ всегда должна быть равна 1 (отсчет ненормированного дискретного фурье-преобразования на частоте  = 0 равен сумме значений входной функции).

Чем больше число коэффициентов фильтра (шире окно фильтра), тем уже полоса пропускания низких частот. Подавление высоких частот довольно неравномерное, с осцилляциями передаточной функции относительно нуля. На рис. 3.1.3 приведен пример фильтрации случайного сигнала (шума) фильтрами с различным размером окна.



Рис. 3.1.3. Фильтрация шумов фильтрами МНК 1-го порядка.




Рис. 3.1.4.
  1   2


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации