Спицнадель В.Н. Основы системного анализа (2000) - файл osnovy_sist_analiza.doc

приобрести
Спицнадель В.Н. Основы системного анализа (2000)
скачать (221.5 kb.)
Доступные файлы (1):
osnovy_sist_analiza.doc1426kb.23.04.2004 15:01скачать

osnovy_sist_analiza.doc

  1   2   3   4   5   6   7   8   9   ...   13
Балтийский государственный технический университет «ВОЕНМЕХ»

им. Д.Ф. Устинова
Спицнадель В. Н.

ОСНОВЫ

СИСТЕМНОГО АНАЛИЗА

Учебное пособие
Рекомендуется для межвузовского использования

«Издательский дом «Бизнес-пресса»

Санкт-Петербург

2000
УДК 303.732.4

ББК 65.05

С 72
Рецензенты:

доктор технических наук, профессор, зав. кафедрой Санкт-Петербургского государственного института точной механики и оптики (технический университет) Н. Д. Фролов

академик акмеологических наук, президент АРИСИМ, доктор технических наук, профессор Санкт-Петербургской государст­венной инженерно-экономической академии Р.Ф. Жуков
Спицнадель В. Н.
С 72 Основы системного анализа: Учеб. пособие. — СПб.: «Изд. дом «Бизнесс-пресса», 2000 г. — 326 с.
ISBN 5-8110-0025-1
В учебном пособии представлены история развития и ло­гико-методологические основы системного анализа. Рассмот­рены практические основы использования системного ана­лиза в науке, технике, экономике, образовании.

Рекомендуется для студентов, может быть полезно науч­ным и инженерно-техническим сотрудникам, работающим в области разработки технических систем.
ББК 65.05

УДК 303.732.4

ISBN 5-8110-0025-1

© Спицнадель В.Н., 2000

© «Издательский дом

«Бизнес-пресса», 2000

Оглавление

ВВЕДЕНИЕ

Глава 1. НЕОБХОДИМОСТЬ ПОЯВЛЕНИЯ СИСТЕМНОГО АНАЛИЗА, ЕГО СУТЬ И ТЕРМИНОЛОГИЯ

1.1. История развития системного подхода

1.2. Современный этап научно-технической революции (НТР)

1.2.1. НТР как система

1.2.2. Особенности современной науки

1.2.3. Создание технических систем — прогрессивное направление развития техники

1.2.4. Образование и его роль в НТП

1.2.5. Еще раз о науке в целом

1.2.6. Развитие технических систем как объект исследования, оценки и управления

1.3. Категориальный аппарат науки и системного анализа

1.3.1. Система

1.3.2. Связь

1.3.3. Структура и структурное исследование

1.3.4. Целое (целостность)

1.3.5. Элемент

1.3.6. Системный подход (СП)

1.3.7. Системный анализ

1.3.8. Другие понятия системного анализа

Глава 2. ЛОГИКА И МЕТОДОЛОГИЯ СИСТЕМНОГО АНАЛИЗА

2.1. Логические основы системного анализа

2.2. Методология познания

2.2.1. Понятие о методе и методологии

2.2.2. Виды методологии и их создание

2.2.3 Методы системного анализа

2.2.4. Принципы системного анализа

2.3. Интегральный тип познания

ГЛАВА 3. ТЕОРИЯ И ПРАКТИКА РЕАЛИЗАЦИИ СИСТЕМНОГО АНАЛИЗА

3.1. Рабочие этапы реализации системного анализа

3.2. Цикл как фундамент мироздания

3.3. Теория циклов

3.4. ПЖЦ ТС — принцип и объект оценки и управления

3.5. Значение полного жизненного цикла

3.6. Организационные структуры управления

3.7. Некоторые практические результаты применения системного анализа

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Кто берется за частные вопросы, без предварительно­го

решения общих, тот неминуемо будет на каждом шагу

бессознательно для себя «натыкаться» на эти общие

воп­росы. А натыкаться слепо на них в каждом частном слу­чае — значит обрекать свою политику на худшие шатания и беспринципность.

В. И. Ленин
«Исследователь ощущает свое невежество тем боль­ше, чем больше он знает...» — это парадоксальное заме­чание крупнейшего физика нашего времени Р. Оппенгеймера как нельзя более точно характеризует парадоксальную ситуацию в современной науке. Если еще недавно ученый буквально гонялся за фактами, то сегодня он не в силах справиться с их половодьем. Аналитические мето­ды, столь эффективные при изучении частных процессов, уже не работают. Нужен новый, более действенный прин­цип, который помог бы разобраться в логических связях между отдельными фактами. Такой принцип был найден и получил название принцип системного движения или системного подхода (СП).

Этот принцип определяет не только новые задачи, но и характер всей управленческой деятельности, научное, техническое, технологическое и организационное совер­шенствование которой обусловлено самой природой круп­ного общественного и частного производства.

Многообразие и возрастающий объем стоящих перед нами задач хозяйственного строительства требует их вза­имной увязки, обеспечения общей целенаправленности. Но этого трудно достичь, если не учитывать сложной за­висимости между отдельными районами страны, между отраслями народного хозяйства, между всеми сферами общественной жизни страны. Более конкретно, 40% ин­формации специалисту необходимо черпать из смежных областей, а подчас и отдаленных.

Уже сегодня системный подход используют во всех областях знания, хотя в ее различных областях он прояв­ляется по-разному.

Так, в технических науках речь идет о системотехни­ке, в кибернетике — о системах управления, в биологии — о биосистемах и их структурных уровнях, в социологии — о возможностях структурно-функционального подхода, в медицине — о системном лечении сложных болезней (коллагенозы, системные васкулиты и др.) терапевтами широ­кого профиля (врачами-системщиками).

В самой природе науки лежит стремление к единству и синтезу знания. Изучение этого стремления, выявле­ние особенностей этого процесса — одна из задач совре­менных исследований в области теории научного знания. В современной науке и технике из-за их необычайной дифференцированности и насыщения информацией пробле­ма концептуального синтеза приобретает особенно важ­ное значение. Философский анализ природы научного знания предполагает рассмотрение его структуры, кото­рое позволяет выявить пути и способы единства и синте­за знаний, ведущие к формированию новых понятий, к концептуальному синтезу. Изучая процессы объединения и синтеза научных теорий в сфере развивающихся наук, можно выявить их различные типы и формы. При перво­начальном подходе к проблеме мы не усматриваем различия между единством знания и его синтезом. Заметим только, что понятие единства знания предполагает опре­деленное его расчленение, его структуру. Синтез знания, понятный как процесс рождения нового, возникает на основе определенных типов объединения или взаимодействия его структурных форм. Иначе говоря, единство и синтез знания — лишь определенные ступени в разви­тии науки. Среди многообразия форм объединения знания, веду­щих к синтезу, легко усмотреть четыре различных типа, иначе говоря, четыре типа единства научного знания.

Первый тип объединения состоит в том, что в процессе дифференциации знания возникают научные дисциплины, подобные кибернетике, семиотике, общей теории систем, содержание которых связано с выявлением общего в са­мых различных областях исследования. На этом пути про­исходит своеобразная интеграция знания, компенсирую­щая до некоторой степени многообразие и отграничение друг от друга различных научных дисциплин. Общеизвест­но, что на этом пути синтезируется новое знание.

Рассматривая более детально такую интеграцию, мы можем наблюдать второй тип единства научного знания. Изучая генезис научных идей, мы замечаем тенденцию к методологическому единству. Эта тенденция заключается в методологическом продолжении одной специальной на­уки, т.е. в перенесении ее теории на другие области ис­следования. Этот второй путь к единству знания можно назвать методологической экспансией. Сразу же заметим, что эта экспансия, плодотворная на определенном этапе, рано или поздно обнаруживает свои границы.

Третий тип стремления к единству научного знания связан с фундаментальными понятиями, которые перво­начально возникают в сфере естественного языка и вклю­чаются затем в систему философских категорий. Такого рода понятия путем соответствующих уточнений приоб­ретают смысл исходных понятий формирующихся науч­ных теорий. Можно сказать, что в данном случае мы име­ем дело с концептуальной формой единства науки.

Последовательное развитие концептуального единства науки создает предпосылки для четвертого и в известном смысле самого существенного пути к единству и синтезу научного знания, а именно — пути разработки и исполь­зования единой философской методологии. Наука — это система многообразных знаний, и развитие каждого эле­мента этой системы невозможно без их взаимодействия. Философия исследует принципы этого взаимодействия и тем самым способствует объединению знания. Она дает основание для высшего синтеза, без которого невозможен синтез научного знания на его более специальных уров­нях исследования (Овчинников Н.Ф. Структурное един­ство и синтез научного знания в свете ленинских идей // Вопр. филос. 1969. № 10).

Возможны и другие подходы к проблеме единства и синтеза знания. Но так или иначе эта проблема нуждает­ся в качестве предпосылки исследования в определенном истолковании природы науки. А она системна, так же как и окружающий нас мир, наше познание и вся человеческая практика. Следовательно, исследование этих объек­тов должно осуществляться с помощью методов, адекват­ных их природе, т.е. системных!

Системность мира представляется в виде объективно существующей иерархии различно организованных взаи­модействующих систем. Системность мышления реализу­ется в том, что знания представляются в виде иерархиче­ской системы взаимосвязанных моделей. Хотя люди и являются частью природы, человеческое мышление обладает определенной самостоятельностью относительно окружа­ющего мира: мыслительные конструкции вовсе не обяза­ны подчиняться ограничениям мира реальных конструк­ций. Однако при выходе в практику неизбежны сопостав­ление и согласование системностей мира и мышления.

Практическое согласование идет через практику по­знания (сближения моделей с реальностью) и практику преобразования мира (приближения реальности к моде­лям). Обобщение этого опыта привело к открытию диалектики; следование ее законам является необходимым условием правильности нашего познания, адекватности наших моделей. Современный системный анализ исходит в своей методологии из диалектики. Можно выразиться более определенно и сказать, что системный анализ есть прикладная диалектика. С появлением системного анали­за философия перестала быть единственной теоретической дисциплиной, не имеющей прикладного аналога. С прак­тической же стороны прикладной системный анализ яв­ляется методикой и практикой улучшающего вмешатель­ства в реальные проблемные ситуации.

Для подлинно высшего образования возникновение и развитие системного анализа имеют ряд важных послед­ствий.

Во-первых, важный этап исследования реальных ситу­аций и построения их моделей (разных уровней — от вер­бальной до математической) является общим для всех спе­циальностей. Для этого этапа системный анализ предла­гает подробную методику, овладение которой должно стать важным элементом в подготовке специалистов любого (не только технического, но также естественного и гумани­тарного) профиля.

Во-вторых, для некоторых инженерных специальнос­тей, прежде всего связанных с проектированием слож­ных систем, а также для прикладной математики систем­ный анализ в скором будущем, очевидно, станет одним из профилирующих курсов.

В-третьих, практика прикладного системного анализа в ряде стран убедительно показывает, что такая деятель­ность в последние годы становится для многих специали­стов профессией, и уже в некоторых университетах раз­витых стран начат выпуск таких специалистов.

В-четвертых, чрезвычайно благоприятной аудиторией для преподавания системного анализа являются курсы по­вышения квалификации специалистов, проработавших после окончания вуза несколько лет на производстве и на собственном опыте испытавших, как непросто иметь дело с проблемами реальной жизни.

Введение системного анализа в вузовские учебные пла­ны и учебный процесс связано с преодолением некоторых трудностей. Главные из них — преобладание технократи­ческого подхода в инженерном образовании, традиционно аналитическое построение наших знаний, специальностей, отображенное в дисциплинарной организации факульте­тов и кафедр, нехватка учебной литературы, неосознан­ность существующими фирмами потребности иметь про­фессионалов-системщиков в своих штатах, так что таких специалистов готовить вроде бы не для кого. Последнее не случайно, ибо, по социологическим опросам, лишь 2—8% населения владеет (стихийным) системным анализом.

Однако жизнь берет свое. Резко возросшие требова­ния к качеству подготовки выпускаемых высшей школой специалистов, необходимость междисциплинарного подхода к решению сложных вопросов, нарастание глубины и мас­штабности проблем при ограничении сроков и ресурсов, отводимых на их решение, — все это значимые факторы, которые сделают преподавание системного анализа необ­ходимым, более того, неизбежным (Тарасенко Ф. Введе­ние к статье Р. Акоффа «Рассогласование между системой образования и требованиями к успешному управлению // Вестн. высш. шк. 1990. № 2). А психологическую инерцию, которая всегда стояла на пути нововведений, можно пре­одолеть только пропагандой новых идей, ознакомлением широкой педагогической, научной и студенческой общественности с существом нового, пробивающего себе доро­гу. Будем надеяться, что предлагаемое пособие сыграет свою роль в том, чтобы привлечь внимание студентов и препо­давателей к некоторым особенностям системного анализа. Тем более системный анализ перспективен и для гармоничного развития личности, для получения студентом пред­ставления о научной картине мира (НКМ) как целостного усвоения знаний по основам наук, и для формирования научного мировоззрения, и для понимания знаний! Имен­но непонимание ведет к утрате желания многих учиться, потере престижа высшей школы.

Обобщая сказанное, можно сделать твердый вывод о необходимости введения в современное образование дис­циплины «системный анализ» — как в виде одного из общих курсов в фундаментальной подготовке студентов и слушателей, так и в виде новой специальности, существу­ющей пока лишь в нескольких вузах мира, но, несомнен­но, являющейся весьма перспективной.

Изучение системного анализа предлагается начать с ознакомления опорных сигналов (по В.Ф. Шаталову). По­чему? Весь окружающий нас мир имеет системную (не­линейную) природу. Поэтому составляющие его объекты, явления и процессы должны объективно отражать его реалии, т. е. быть также системными, нелинейными. Од­нако современная система (какой парадокс в названии!) высшего образования построена по линейному принци­пу — и в этом ее существенный недостаток. Он может изживаться постепенно, через переход от линейных к не­линейным формам. Путей этого движения много. Один из них — разработка и изучение опорных сигналов, пред­ставляющих собой нелинейный текст (гипертекст!), за ко­торое отвечает правое полушарие мозга человека, создаю­щее полнокровный и натуральный образ мира. Именно опорные сигналы фиксируют и интенсифицируют самостоятельную работу студентов, в том числе и в направле­нии изучения и понимания системного анализа.

Опорные сигналы (ОС) — это специально закодиро­ванное и особым образом оформленное содержание темы, раздела или дисциплины в целом. Принципами кодирова­ния являются:

извлечение квинтэссенции материала;

представление материала в наиболее удобном для изу­чения виде.
Опорные сигналы для изучения системного анализа

1. Сведение множества к единому — в этом первоосно­ва красоты (Пифагор, древнегреческий ученый, профессор).

2. Глубина прозрения и элегантность гипотезы — по­чти всегда следствие общности (В. Дружинин, профес­сор; Д. Конторов, профессор).

3. Современным мудрецом следует считать того, кто в состоянии увидеть общее в тех вещах и явлениях, ко­торые другим представляются различными и совершенно несравнимыми (Ф. Вольтер, французский философ).

4. Те, кто задерживаются только на «деталях» позна­ния, обретают «печать духовного убожества» (Жюльен Офре Ламерти, французский философ и врач, представи­тель французского материализма).

5. ...Различные вещи становятся количественно срав­нимыми лишь после того, как они сведены к одному и тому же единству. Только как выражения одного и того же един­ства они являются одноименными, а следовательно, срав­нимыми величинами (К. Маркс, Ф. Энгельс, немецкие фи­лософы).

6. В недалеком времени общество будет иметь «одну науку». Представители ее не сверхуниверсалы, все зна­ющие и все умеющие. Это будут высокообразованные, эрудированные люди, обладающие глубокими представ­лениями о развитии науки и общества в целом, знаю­щие основные пути и возможности познания через «се­бя» (человека) всей природы. В то же время они будут универсалами в какой-то одной или группе отраслей (К. Маркс).

7. Единство природы обнаруживается в поразитель­ной аналогичности дифференциальных уравнений, отно­сящихся к разным областям явлений (В. И. Ленин — осно­ватель советского государства).

8. Факты в науке и технике, если взять их в целом, в их связи, не только «упрямая», но и безусловно доказа­тельная вещь... Необходимо брать не отдельные факты, а всю совокупность относящихся к рассматриваемому во­просу фактов, без единого исключения. Мы никогда не до­стигнем этого полностью, но требование всестороннос­ти предостережет нас от ошибок и от «омертвления» (В. И. Ленин).

9. Кто берется за частные вопросы, без предваритель­ного решения общих, тот неминуемо будет на каждом шагу бессознательно для себя «натыкаться» на эти об­щие вопросы. А натыкаться слепо на них в каждом част­ном случае значит обрекать свою политику на худшие шатания и беспринципность (В. И. Ленин).

10. Наука представляет собой единое целое. Ее раз­деление на отдельные области обусловлено не столько при­родой объектов, сколько ограниченностью способностей человеческого познания. В действительности, «существует непрерывная цепь от физики к химии, через биологию и антропологию к социальным наукам, ц е п ь, которая ни в одном месте не может быть разорвана, разве лишь по про­изволу» (разрядка моя. — В.С.) (М. Планк, немецкий фи­зик, лауреат Нобелевской премии).

11. Цель современной науки — раскрыть внутреннюю связь и тенденции, открыть законы, объективную логику этих изменений (В. И. Ленин).

12. Цель современной науки состоит в том, чтобы видеть общее в частном и постоянное в переходящем (К. Уайтхед, канадский профессор).

13. ...Необходим комплексный, системный подход к вы­работке ответственных решений. Мы приняли такой на вооружение и будем последовательно проводить его в жизнь (Л. И. Брежнев, Генеральный секретарь ЦК КПСС).

14. Наука серьезно обогатила теоретический арсенал планирования, разработав методы экономико-математи­ческого моделирования, системного анализа и др. Необхо­димо шире использовать эти методы... Это делает важ­ным не только производство соответствующей техники, но и подготовку значительного числа квалифицированных кадров (А. И. Брежнев).

15. Среди самых насущных проблем развития совре­менной науки одно из первых мест занимает и н т е г р а ­ц и я научных знаний. Она находит свое выражение в вы­работке общих понятий, принципов, теорий, концепций в создании общей (разрядка моя. — В.С.) картины мира. Бурный процесс появления общих теорий отдельных ви­дов знаний обусловливается в первую очередь интереса­ми повышения их эффективности и способностью их уплотнения (В. Турченко, философ).

16. Синтез различных наук оказался в высшей степени плодотворным. Данная тенденция становится важнейшей, ибо наиболее крупные открытия нашего времени сделаны на стыках различных наук, где родились новые научные дисциплины и направления (М.Г. Чепиков, философ).

17. Процесс интеграции приводит к выводу, что мно­гие проблемы получат правильное научное освещение толь­ко в том случае, если они будут опираться одновременно на общественные, естественные и технические науки. Это требует применения результатов исследования разных специалистов — философов, социологов, психологов, эконо­мистов, инженеров... Именно в связи с процессами инте­грации возникла потребность развития системных иссле­дований (В.Н. Садовский, философ).

18. Метод целостного подхода имеет важнейшее значе­ние в становлении более высокой ступени мышления, а именно перехода от аналитической ступени к синтетической, которая направляет познавательный процесс к более все­стороннему и глубокому (разрядка моя. — В.С.) познанию явлений (И.В. Блауберг, философ; Б.Г. Юдин, философ).

19. Главная цель любой науки состоит в том, чтобы свести самое удивительное к обычному, чтобы показать, что сложность, если смотреть на нее под верным углом, оказывается лишь з а м а с к и р о в а н н о й (разрядка моя. — В.С.) простотой, чтобы открыть закономерности, скрывающиеся в кажущемся хаосе. Но эти закономерности мо­гут быть очень сложными по своему представлению или содержать такие исходные данные, которых не хватает для осуществления какого-либо расчета (Э. Квейд, амери­канский системщик).

20. Мыслительная деятельность отдельного Человека тем продуктивнее и логичнее, чем полнее и глубже он ус­воил в с е о б щ и е (разрядка моя. — В.С.) категории мыш­ления (В.В. Давыдов, профессор).

21. В природе нет отдельно существующих техники и технологии, физики и биологии, исследования и проекти­рования (М. Планк).

22. Явления природы, как правило, комплексны. Они ничего не знают о том, как мы поделили наши знания на науки. Только всестороннее рассмотрение явлений с точ­ки зрения физики, химии, механики, а иногда и биологии позволит распознать их сущность и применить на прак­тике (Н.Н. Семенов, академик).

23. НТР выявила ряд интеллектуальных «болезней». Одна из них — узость профессионального сознания. В любой об­ласти научно-технической деятельности нельзя сделать что-либо существенное, если сосредоточить внимание и усилия на узком месте. Сужение поиска — условие как будто грамотного решения проблемы. Но постоянное участие специалистов в такого рода программах нередко приводит к тому, что они теряют панорамное видение всего фронта работ. Возникает «глухота специализации», которая при неблагоприятных условиях может перерасти в «заболева­ние», названное К. Марксом «профессиональным кретиниз­мом». Не случайно, что именно он заложил принципы СП при анализе капиталистического производства. Его «Капи­тал» — первое фундаментальное системное исследование структуры общества (Е. Жариков, профессор).

24. Системных подход к явлениям — одно из важней­ших интеллектуальных свойств человека (В.Н. Спицнадель, профессор).

25. Чтоб жизни суть постичь

И описать точь-в-точь,

Он, тело расчленив,

А душу выгнав прочь,

Глядит на части. Но...

Духовная их связь

Исчезла, безвозвратно унеслась!

Г. Гете, немецкий поэт

В одно мгновенье видеть вечность,

Огромный мир — в зерне песка,

В единой горсти — бесконечность

И небо — в чашечке цветка.

У. Блейк, английский философ и поэт

26. Подход научный — значит системный!!! (В.Н. Спицнадель).

27. Мир, наше познание и вся человеческая практика имеют системную природу. Информация идет из окружа­ющего мира. Мы — мыслим. Необходимо согласование си­стемности и мышления. Но мышление обеспечивается образованием. Следовательно, и оно должно быть системным!!! (В.Н. Спицнадель).

28. Была подорвана престижность инженерного твор­чества, растеряны всемирно известные отечественные школы разработчиков техники. Сложилась порочная фило­софия подражания и посредственности. В результате часть продукции не отвечает современному уровню науки и тех­ники. В чем же... корни сложившегося положения с техни­ческим уровнем создаваемых машин? Прежде всего в том, что по существу до сих пор у нас отсутствовал систем­ный анализ новейших мировых достижений (М.С. Горба­чев, Генеральный секретарь ЦК КПСС).

29. Считаю, что в этом виновата и высшая школа, не готовя соответствующих специалистов. В передовой статье «На путях перестройки высшего образования» (Вест­ник высшей школы. 1986. № 7) отмечается, что «...сейчас впервые предложены решения, базирующиеся на систем­ных позициях (В.Н. Спицнадель).

30. Важный этап системных исследований реальных ситуаций и построения их моделей является общим прак­тически для всех специальностей;

для инженерных специалистов, связанных с проекти­рованием СТС, также для прикладной математики сис­темный анализ в скором будущем (чего ждать, и так опоз­дали. — В. С.) очевидно, станет одним из профилирующих курсов;

практика прикладного СА в ряде стран убедительно показывает, что такая научно-техническая деятельность (НТД) в последние годы становится для многих специалис­тов профессией, и уже в нескольких университетах разви­тых стран начат выпуск таких специалистов;

чрезвычайно благоприятной аудиторией для препода­вания СА является ИПК специалистов, проработавших после окончания вуза несколько лет на производстве и на собственном опыте испытавших, как непросто иметь де­ло с проблемами реальной жизни (Ф.П. Тарасенко, профессор).

Трудности введения СА в уч/процесс: традиционно аналитическое построение наших знаний и специальнос­тей, отображенное в организации факультетов и кафедр. Поэтому руководители не знают сущности СА! Доклад в ЛГУ: «Кто мыслит системно?» Ответ: 8% руководите­лей Северо-Запада (В.Н. Спицнадель).

31. В чем же заключается важность СА? Прежде все­го — для принятия оптимальных решений (В.Н. Спицна­дель). Половина беспокойства в мире (а следовательно, и болезней) происходит от людей, пытающихся принимать решения без достаточного знания того, на чем основыва­ется решение. Решение должно быть не любым, а оптималь­ным. Но нельзя принять оптимального решения в рамках предметного знания! (А. Рапопорт, канадский профессор).

32. Я не знаю ни одного завершенного системного ис­следования в технике (А.И. Берг, академик).

33. Современные системные исследования, к сожале­нию, остаются либо частнонаучными разработками, либо концентрируются вокруг формальных методологических вопросов (В.П. Кузьмин, профессор).

34. Исключая единичные случаи, необходимо признать, что системная методология редко используется в массовом масштабе и для большинства разработок... характерно эм­пирическое развитие метода проб и ошибок (И.М. Мака­ров, академик).

35. Системный подход легко провозглашается в общем виде, но очень трудно реализуется в конкретной форме, т. к. многоаспектная ориентация требует специальной научной, организационной, технической, педагогической подготовки и др. условий в совокупности с целенаправленными мероприятиями по ресурсному обеспечению сис­темной деятельности. Подчеркнем, единой и непрерыв­ной системной деятельности, начиная от исследования конкретного объекта и кончая ликвидацией, наступаю­щей после физического или морального его устаревания (В.Н. Спицнадель).

36. СА характеризуется главным образом не специфи­ческим научным аппаратом, а упорядоченным (разряд­ка моя. — В. С.), логически обоснованным подходом к иссле­дованию проблемы и использованию соответствующих ме­тодов их решения, которые могут быть разработаны в рамках других наук (Ю.И. Черняк, профессор).

37. Если естествознание было преимущественно со­бирающей наукой, то сейчас оно стало в сущности упо­рядочивающей (разрядка моя. — В. С.) наукой, наукой о связях (Ф. Энгельс).

38. Все мы... пользуемся огромным запасом неосознан­ных знаний, навыков и умений, сформировавшихся на про­тяжении длительной эволюции человечества (Е.П. Велихов, академик). В связи с этим возникает вопрос — как мы можем студентам читать эти неосознанные знания, тем более нацеливая их на самостоятельную работу? (В.Н. Спицнадель).

39. Большинство специалистов понимают (синтез) не прямо, а зигзагами, не сознательно, а стихийно, идут к нему, не видя ясно своей конечной цели, а приближаясь ней ощупью, шатаясь, иногда даже задом (В. И. Ленин).

40. С принципом развития (элемент СА. — В. С.) со­гласны все. Но это есть поверхностное согласие, кото­рым душат и опошляют истину (В. И. Ленин).

41. Сегодня о системном подходе говорится практи­чески во всех науках, хотя в ее различных разделах он проявляется по-разному. Так, в технических науках речь дет о системотехнике, в кибернетике — о СУ, в биоло­гии — о биосистемах и их структурных уровнях, в соци­ологии — о возможностях структурно-функционального подхода, в медицине — о сложных системных болезнях (коллагенозы, системные васкулиты и пр.), лечить кото­рые должны терапевты широкого профиля (врачи-системщики) (Е.П. Тареев, академик).

42. Существо системного подхода ярко выражено в одном высказывании, приписываемом английскому офице­ру периода Второй мировой войны: «Эти парни не возьмут в руки даже паяльника, пока они досконально не разберут­ся в стратегии военных действий на всем Тихоокеанском театре». Налицо целостность локальных и глобальных задач конкретной деятельности! (В.Н. Спицнадель).

43. Значение системности: для принятия оптималь­ных (!) решений, которые невозможно принять в предмет­ном знании; в противном случае головотяпство и не­компетентность; для сокращения нагрузки на память; пе­регрузки в ВШ возникают за счет слишком большой мобилизации памяти студентов при ярко выраженной не­догрузки их мысли, воображения и фантазии; практика: повышает интерес студентов к науке; не только развива­ет студентов, но и воспитывает их; восприятие теоре­тических знаний происходит целыми блоками; СА — пред­посылка дальнейшего рационального овладения знаниями; коль скоро студент будет осознавать природу знаний, пути их получения и фиксации, состав и структуру научной теории, то он сможет осмыслить новые знания по об­разцу, усвоенному в вузе через курс СА; установка на ос­мысление знаний в определенной структуре приводит сту­дента к формулировке вопросов, на которые он должен искать ответ в разных источниках, к критическому рас­смотрению новой информации; все это является необхо­димыми элементами творческого мышления; для понима­ния, потому что именно оно является результатом син­теза, а не анализа; системность позволяет получить НKM — целостное усвоение знаний по основам наук.

Ведь наука представляет собой единое целое и ее раз­деление на отдельные области условно. НКМ — это модель, образ действительности, в основе которого лежат данные конкретных наук о природе и обществе. Знания, относящиеся к НКМ, называют мировоззренческими: они формируются очень медленно, но СА ускоряет их форми­рование (В.Н. Спицнадель).
ГЛАВА 1. НЕОБХОДИМОСТЬ ПОЯВЛЕНИЯ

СИСТЕМНОГО АНАЛИЗА, ЕГО СУТЬ

И ТЕРМИНОЛОГИЯ
Сведение множества к единому — в этом первоосно­ва красоты.

Пифагор

История — это наука о прошлом и наука о будущем.

Л. Февр
1.1. История развития системного подхода

Составляющим понятий «системный анализ», «систем­ная проблема», «системное исследование» является слово «система», которое появилось в Древней Элладе 2000—2500 лет назад и первоначально означало: сочетание, орга­низм, устройство, организация, строй, союз. Оно также выражало определенные акты деятельности и их резуль­таты (нечто, поставленное вместе; нечто, приведенное в порядок).

Первоначально слово «система» было связано с фор­мами социально-исторического бытия. Лишь позднее прин­цип порядка, идея упорядочивания переносятся на Все­ленную.

Перенос значения слова с одного объекта на другой и вместе с тем превращение слова в обобщенное понятие совершаются поэтапно. Метафоризация слова «система» была начата Демокритом (460—360 до н. э.), древнегре­ческим философом, одним из основоположников материалистического атомизма. Образование сложных тел из атомов он уподобляет образованию слов из слогов и сло­гов из букв. Сравнение неделимых форм (элементов с буквами) — один из первых этапов формирования науч­но-философского понятия, обладающего обобщенным уни­версальным значением.

На следующем этапе происходят дальнейшая универ­сализация значения слова, наделение его высшим обоб­щенным смыслом, что позволяет применять его и к физи­ческим, и к искусственным объектам. Универсализация может осуществляться двояко — или в процессе мифотворчества, т. е. построения мифа на основе метафоры [ха­рактерно для одного из основателей объективного идеализ­ма Платона (427—347 до н. э.)], или же путем воссоздания философско-рациональной картины мироздания и челове­ческой культуры, т. е. трансформирования и развертыва­ния метафоры в философской системе [характерно для Аристотеля (384—322 до н.э.), колеблющегося между ма­териализмом и идеализмом] [Огурцов А.П. «Этапы интер­претации системности научного знания (античность и новое время)». Системные исследования // Ежегодник. М.: Наука, 1974].

Итак, в античной (древней) философии термин «систе­ма» характеризовал упорядоченность и целостность естественных объектов, а термин «синтагма» — упорядоченность и целостность искусственных объектов, прежде всего про­дуктов познавательной деятельности. Именно в этот период был сформулирован тезис о том, что целое больше суммы его частей (Философский словарь. М.: Политиздат, 1980).

Не касаясь вопроса о трактовке системности знания в средневековой философии, отметим лишь, что для выра­жения интегративности познавательных образований здесь стали использоваться новые термины: сумма, дисципли­на, доктрина...

С возникновением науки и философии Возрождения (XV в.) связано радикальное преобразование в истолкова­нии бытия. Трактовка бытия как космоса сменяется рас­смотрением его как системы мира. При этом система мира понимается как независимое от человека, обладающее сво­им типом организации, иерархией, имманентными (свойственными, внутренне присущими какому-либо предме­ту, явлению, проистекающими из их природы) законами и суверенной структурой. Кроме того, бытие становится не только предметом философского размышления, стре­мящегося постичь его целостность, но и предметом социально-научного анализа. Возникает ряд научных дисцип­лин, каждая из которых вычленяет в природном мире определенную область и анализирует ее свойственными этим дисциплинам методами.

Астрономия была одной из первых наук, которая пере­шла к онтолого-натуралистической интерпретации систем­ности мироздания. Большую роль в становлении новой трактовки системности бытия сыграло открытие Н. Коперника (1473—1543). Он создал Гелиоцентрическую сис­тему мира, объяснив, что Земля, как и другие планеты, обращается вокруг Солнца и, кроме того, вращается вокруг своей оси. Телеологизм1, отягощавший представления Ко­перника, был преодолен позднее Г. Галилеем (1564—1642) и И. Ньютоном (1642—1727).

Наука эпохи Возрождения выработала определенную концептуальную систему. Ее важнейшие категории — вещь и свойства, целое и часть, субстанция и атрибуты. Вещь трактовалась как сумма отдельных свойств (забыли тезис античности???).

Основная познавательная процедура сводится к поис­ку сходства и различия в предметах. В связи с этим весь­ма специфично трактуется категория «отношение», кото­рая выражает прежде всего субординацию главных и вто­ростепенных свойств, динамическое воздействие некоего предмета на другой, первый из которых является причи­ной, а второй — следствием.

Важнейшая особенность представлений о системнос­ти предмета познания, характерная для науки эпохи Воз­рождения, состоит в выдвижении на первый план кау­зального, а не телеологического способа объяснения...

Глубокую и основательную разработку идея системной организации научного знания получила в немецкой клас­сической философии. Структура научного знания, прин­ципы и основания построения теоретических систем ста­ли в ней предметом специального философского, логико-методологического анализа.

Немецкий математик и философ И.Г. Ламберт (1728—1777) подчеркивал, что «всякая наука, как и ее часть, пред­стает как система, поскольку система есть совокупность идей и принципов, которая может трактоваться как це­лое. В системе должны быть субординация и координация». Следует отметить, что он анализировал системность науки на основе обобщенного рассмотрения систем вооб­ще, построения общей системологии.

Новый этап в интерпретации системности научного знания связан с именем И. Канта (1724—1804). Его заслу­га состоит не только в четко осознанном системном ха­рактере научно-теоретического знания, но и в превраще­нии этой проблемы в методологическую, в выявлении определенных процедур и средств системного конструи­рования знания.

Ограниченность кантовского понимания системности знания состоит в том, что конструктивно-методологиче­ские принципы образования научных систем являются у него характеристиками лишь формы, а не содержания зна­ния.

Эту линию в еще большей мере проводит И.Г. Фихте (1762—1814), который считает, что принципы полагания формы знания являются одновременно принципами пола­гания и его содержания. Исходный тезис Фихте — науч­ное знание есть системное целое. Фихте является родоначальником того направления в классической немецкой философии, которое останавливается на вычленении фор­мально-логических принципов систематизации сложивше­гося знания, ограничивая тем самым системность знания систематичностью его формы. Это привело к отождествле­нию системности научного знания и его систематического изложения. Это направление сосредоточивает свое внима­ние не на научном исследовании, а на изложении результатов знания, систематического представления теоретического знания. Такой подход особенно проявился у последо­вателей Канта и Фихте — К. Шмида, Я. Фриза и др.

Г. Гегель (1770—1831), объективный идеалист, исхо­дит из единства содержания и формы знания, из тождества мысли и действительности и предлагает историче­скую трактовку становления системы в соответствии с принципом восхождения от абстрактного к конкретно­му. Однако в силу отождествления метода и системы, в силу телеологического истолкования истории знания, он не смог предложить методолого-конструктивных средств для формирования системных научных образований и фактически лишил все предшествующие ему теоретиче­ские и философские построения статуса системы. По сути дела, они оказались в его интерпретации лишь абстрактным выражением, превращенной формой его системы, претендовавшей на единственно возможную и абсолют­но значимую.

Теоретическое естествознание XIX—XX вв. исходит из различения предмета и объекта знания. Подчеркивая активный характер человеческого познания, новый спо­соб мысли трактует предмет исследований как нечто созданное и создаваемое человеком в ходе освоения приро­ды. Поднимается роль моделей в познании.

Целое понимается уже не как простая сумма, а как функциональная совокупность, которая формируется не­которым заранее задаваемым отношением между элемен­тами. При этом фиксируется наличие особых интегративных характеристик данной совокупности — целостность, несводимость к составляющим элементам. Сама эта сово­купность, отношение между элементами (их координация, субординация и т.д.) определяются некоторым правилом или системообразующим принципом. Этот принцип от­носится как к порождению свойств целого из элементов, так и к порождению свойств элементов из целого. Системообразующий принцип позволяет не только постулиро­вать те или иные свойства элементов и системы, но и предсказывать возможные элементы и свойства систем­ной совокупности.

Марксистская интерпретация системности научного знания противостоит как наивному антологизму, так и волюнтаристскому конструктивизму. В противовес созер­цательному материализму марксизм подчеркивает актив­ный характер человеческого познания, связывает системность научного знания с формами познавательной дея­тельности человека. Вместе с тем марксистское понимание познания как деятельности не имеет ничего общего с во­люнтаристской ее трактовкой, лишающей мышление со­держательных характеристик. Марксизм подчеркивает единство природы и деятельности человека, проводит мысль о том, что «человек в процессе производства мо­жет действовать лишь так, как действует сама природа, т.е. может изменять лишь формы веществ» (Маркс К., Энгельс Ф. // Соч. Т. 23. С. 52).

Марксистская гносеология выдвинула определенные принципы анализа системности научного знания. К ним относятся историзм, единство содержательной и формаль­ной сторон научного знания, трактовка системности не как замкнутой системы, а как развивающейся последовательности понятий и теорий. При таком подходе систем­ность знаний предполагает дальнейшее совершенствова­ние системы понятий...

Попытки разработать общие принципы системного подхода были предприняты врачом, философом и эконо­мистом А.А. Богдановым (1873— 1928) в работе «Всеобщая организационная наука (тектология)» (3-е изд. М.; Л., 1925—1929. Ч. 1—3). Исследования, проведенные уже в наши дни, показали, что важные идеи и принципы кибернети­ки, сформулированные Н. Винером и особенно У. Росс Эшби, значительно раньше, хотя и в несколько иной фор­ме, были выражены Богдановым. В еще большей мере это относится к общей теории систем (ОТС) Л. фон Берталанфи, идейная часть которой во многом предвосхищена автором тектологии.

Тектология (греч.— строитель) — весьма оригинальная общенаучная концепция, исторически первый разверну­тый вариант ОТС. Ее созданием автор хотел бросить вы­зов марксизму, выдвинув в противовес ему концепцию, которая претендует на универсальность. Для построения тектологии используется материал самых различных наук, в первую очередь естественных. Анализ этого материала приводит к выводу о существовании единых структурных связей и закономерностей, общих для самых разнородных явлений.

Основная идея тектологии — признание необходимо­сти подхода к любому явлению со стороны его организо­ванности (у других авторов — системности). Под органи­зованностью понимается свойство целого быть больше суммы своих частей. Чем больше целое разнится от сум­мы своих частей, тем больше оно организовано. Тектология рассматривает все явления как непрерывные процес­сы организации и дезорганизации. Принципы организо­ванности и динамичности тесно связаны с принципом целостного рассмотрения отдельных явлений и всего мира вообще.

ОТС и тектология — это две науки об организованно­сти, системности явлений, кибернетика же — наука об управлении этими объектами. Таким образом, предмет кибернетики уже, что обусловлено большей широтой понятия «организация системы», чем понятия «управление». Тектология как общая теория включает в сферу своего внимания не только кибернетические принципы, т. е. прин­ципы управления систем, но и вопросы их субординации (иерархических порядков), их распада и возникновения, обмена со средой и веществом и т.д.

Австрийский биолог и философ Л. Фон Берталанфи (1901—1972) первым из западных ученых разработал кон­цепцию организма как открытой системы и сформулиро­вал программу построения ОТС. В своей теории он обоб­щил принципы целостности, организации, эквифинальности (достижения системой одного и того же конечного состояния при различных начальных условиях) и изомор­физма.

Начиная со своих первых работ, Л. Берталанфи про­водит мысль о неразрывности естественно-научного (био­логического) и философского (методологического) иссле­дований... Сначала была создана теория открытых систем, граничащая с современной физикой, химией и био­логией. Классическая термодинамика исследовала лишь закрытые системы, т. е. не обменивающиеся веществом с внешней средой и имеющие обратимый характер. По­пытка применения классической термодинамики к живым организмам (начало XX в.) показала, что, хотя при рассмотрении органических явлений использование фи­зико-химических принципов имеет большое знание, так как в организме имеются системы, находящиеся в равновесии (характеризующимся минимумом свободной энер­гии и максимумом энтропии), однако сам организм не мо­жет рассматриваться как закрытая система в состоянии равновесия, ибо он не является таковым. Организм пред­ставляет собой открытую систему, остающуюся постоян­ной при непрерывном изменении входящих в нее ве­ществ и энергии (так называемое состояние подвижного равновесия).

В 1940—50 гг. Л. Берталанфи обобщил идеи, содержа­щиеся в теории открытых систем, и выдвинул программу построения ОТС, являющейся всеобщей теорией органи­зации. Проблемы организации, целостности, направлен­ности, телеологии, саморегуляции, динамического взаимодействия весьма актуальны и для современной физики, химии, физической химии и технологии, а не только для биологии, где подобные проблемы встречаются повсюду. Пока что такие понятия были чужды классической физи­ке. Если до сих пор унификацию наук видели обычно в сведении всех наук к физике, то, с точки зрения Л, Берта­ланфи, единая концепция мира может быть, скорее, основана на изоморфизме законов в различных областях. В ре­зультате он приходит к концепции синтеза наук, которую и противоположность редукционизму (т. е. сведению всех наук к физике) называет перспективизмом.

Построенная теория организации является специаль­ной научной дисциплиной. Вместе с тем она выполняет определенную методологическую функцию. В силу обще­го характера исследуемого предмета (системы) ОТС дает возможность охватить одним формальным аппаратом об­ширный круг специальных систем. Благодаря этому она может освободить ученых от массового дублирования ра­бот, экономя астрономические суммы денег и времени.

К числу недостатков ОТС Л. Берталанфи относятся неполное определение понятия «система», отсутствие осо­бенностей саморазвивающихся систем и теоретического исследования связи, а также условий, при которых систе­ма модифицирует свои формы. Но основной методологи­ческий недостаток его теории заключается в утверждении автора о том, что она выполняет роль философии совре­менной науки, формируя философски обобщенные прин­ципы и методы научного исследования. В действительнос­ти это не так. Ибо для философского учения о методах исследования необходимы совершенно иные (новые) ис­ходные понятия и иная направленность анализа: абстракт­ное и конкретное специфически мысленное знание, связь знаний, аксиоматическое построение знаний и др., что отсутствует в ОТС.

Однако, учитывая большое методологическое значе­ние работы Л. Берталанфи (Общая теория систем — об­зор проблем и результатов. Системные исследования // Ежегодник. М.: Наука, 1969), рассмотрим различные на­правления в разработке теории систем. В соответствии с его взглядами, системная проблематика сводится к огра­ничению применения традиционных аналитических про­цедур в науке. Обычно системные проблемы выражаются в полуметафизических понятиях и высказываниях, подоб­ных, например, понятию «эмерджентная эволюция» или утверждению «целое больше суммы его частей», однако они имеют вполне определенное операционное значения. При применении «аналитической процедуры» некоторая исследуемая сущность разлагается на части, и, следова­тельно, затем она может быть оставлена или воссоздана из собранных вместе частей, причем эти процессы воз­можны как мысленно, так и материально. Это основной принцип «классической» науки, который может осуществляться различными путями: разложением исследуемого явления на отдельные причинные цепи, поисками «атомар­ных» единиц в различных областях науки и т. д. Научный прогресс показывает, что этот принцип классической науки, впервые сформулированный Галилеем и Декартом, приводит к большим успехам при изучении широкой сфе­ры явлений.

Применение аналитических процедур требует выпол­нения двух условий. Во-первых, необходимо, чтобы взаи­модействие между частями данного явления отсутствовало или было бы пренебрежимо мало для некоторой иссле­довательской цели. Только при этом условии части можно реально, логически или математически «извлекать» из целого, а затем «собирать». Во-вторых, отношения, опи­сывающие поведение частей, должны быть линейными. Только в этом случае имеет место отношение суммативности, т. е. форма уравнения, описывающего поведение целого, такова же, как и форма уравнений, описывающих поведение частей; наложение друг на друга частных про­цессов позволяет получить процесс в целом и т.д.

Для образований, называемых системами, т.е. состоя­щих из взаимодействующих частей, эти условия не вы­полняются. Прототипом описания систем являются сис­темы дифференциальных уравнений, в общем случае не­линейных. Систему, или «организованную сложность», можно описать через «сильные взаимодействия» или вза­имодействия, которые «нетривиальны», т.е. нелинейны. Методологическая задача теории систем, таким образом, состоит в решении проблем, которые носят более общий характер, чем аналитически-суммативные проблемы классической науки.

Существуют различные подходы к таким проблемам. Автор намеренно использует довольно расплывчатое выражение — «подходы», поскольку они логически неодно­родны, характеризуются различными концептуальными моделями, математическими средствами, исходными пози­циями и т.д. Однако все они являются теориями систем. Если оставить в стороне подходы в прикладных системных наследованиях, таких как системотехника, исследование операций, линейное и нелинейное программирование и т.д., то наиболее важными являются следующие подходы.

«Классическая» теория систем. Эта теория ис­пользует классическую математику и имеет цели: установить принципы, применимые к системам вообще или к их определенным подклассам (например, к закрытым и открытым системам); разработать средства для их исследования и описания и применить эти средства к конкретным случа­ям. Учитывая достаточную общность получаемых результа­тов, можно утверждать, что некоторые формальные сис­темные свойства относятся к любой сущности, которая является системой (к открытым системам, иерархическим системам и т.д.), даже если ее особая природа, части, отно­шения и т.д., не известны или не исследованы. Примерами могут служить: обобщенные принципы кинетики, примени­мые, в частности, к популяциям молекул или биологических существ, т.е. к химическим и биологическим системам; урав­нения диффузии, используемые в физической химии и для анализа распространения слухов; понятия устойчивого рав­новесия и модели статистической механики, применимые к транспортным потокам; аллометрический анализ биологи­ческих и социальных систем.

Использование вычислительных машин и моделирование. Системы дифференциальных уравне­ний, применяемые для «моделирования» или специфика­ции систем, обычно требуют много времени для решения, даже если они линейны и содержат немного переменных; нелинейные системы уравнений разрешимы только в не­которых частных случаях. По этой причине с использова­нием вычислительных машин открылся новый подход к системным исследованиям. Дело не только в значительном облегчении необходимых вычислений, которые иначе по­требовали бы недопустимых затрат времени и энергии, и замене математической изобретательности заранее установленными последовательностями операций. Важно еще и то, что при этом открывается доступ в такие области, где в настоящее время отсутствует соответствующая математическая теория и нет удовлетворительных способов решения. Так, с помощью вычислительных машин могут анализировать системы, по своей сложности далеко превосходящие возможности традиционной математики; с другой стороны, вместо лабораторного эксперимента можно вос­пользоваться моделированием на вычислительной машине и построенная таким образом модель затем может быть проверена в реальном эксперименте. Таким способом Б. Гесс, например, рассчитал 14-звенную цепь реакций гликолиза в клетке на модели, содержащей более 100 нелинейных диф­ференциальных уравнений. Подобный анализ стал обычным делом в экономических разработках, при исследовании рын­ка и т. д.

Теория ячеек. Одним из аспектов системных иссле­дований, который следует выделить, поскольку эта область разработана чрезвычайно подробно, является теория яче­ек, изучающая системы, составленные из подъединиц с определенными граничными условиями, причем между этими подъединицами имеют место процессы переноса. Такие ячеечные системы могут иметь, например, «цепную» или «сосковую» структуру (цепь ячеек или центральную ячейку, сообщающуюся с рядом периферийных ячеек). Вполне понятно, что при наличии в системе трех и более ячеек математические трудности становятся чрезвычайно большими. В этом случае анализ возможен лишь благода­ря использованию преобразований Лапласа и аппарата теорий сетей и графов.

Теория множеств. Общие формальные свойства систем и формальные свойства закрытых и открытых систем могут быть аксиоматизированы в языке теории мно­жеств. По математическому изяществу этот подход выгодно отличается от более грубых и специализированных формулировок «классической» теории систем. Связи ак­сиоматизированной теории систем с реальной проблема­тикой системных исследований пока выявлены весьма слабо.

Теория графов. Многие системные проблемы относятся к структурным и топологическим свойствам систем, а не к их количественным отношениям. В этом случае ис­пользуется несколько различных подходов. В теории графов, особенно в теории ориентированных графов (диграфов), изучаются реляционные структуры, представляемые в топологическом пространстве. Эта теория применяется для исследования реляционных аспектов биологии. В ма­гматическом смысле она связана с матричной алгеброй, но своими моделями — с тем разделом теории ячеек, в котором рассматриваются системы, содержащие частично «проницаемые» подсистемы, а вследствие этого — с тео­рией открытых систем.

Теория сетей. Эта теория, в свою очередь, связана с теориями множеств, графов, ячеек и т. д. Она применя­ется к анализу таких систем, как нервные сети.

Кибернетика. В основе кибернетики, т.е. теории систем управления, лежит связь (передача информации) между системой и средой и внутри системы, а также управление (обратная связь) функциями системы относительно среды. Кибернетические модели допускают широкое применение, но их нельзя отождествлять с теорией систем вообще. В биологии и других фундаментальных науках кибернетические модели позволяют описывать формальную структуру механизмов регуляции, например, при помощи блок-схем и графов потоков. Использование кибернетических моделей позволяет установить структуру регуляции системы даже в том случае, когда реальные механиз­мы остаются неизвестными и система представляет собой «черный ящик», определяемый только его входом и выходом. Таким образом, одна и та же кибернетическая схема может применяться к гидравлическим, электрическим, физиологическим и другим системам. Тщательно разработанная техническая теория сервомеханизмов применяется естественным системам в ограниченном объеме.

Теория информации. По К. Шеннону, математическое выражение для понятия информации изоморфно выражению для негэнтропии в термодинамике. Считается, что понятие информации можно использовать в качестве меры организации. Хотя теория информации имеет большое значение для техники связи, ее применение в науке весьма незначительно. Главной проблемой остается выяснение отношения между информацией и организацией, между теорией информации и термодинамикой.

Теория автоматов. Это так называемая теория абстрактных автоматов, имеющих вход, выход, иногда способных действовать методом проб и ошибок и обучаться. Общей моделью теории автоматов является машина Тьюринга, которая представляет собой абстрактную машину, способную печатать (или стирать) на ленте конечной дли­ны цифры 1 и 0. Можно показать, что любой сколь угод­но сложный процесс может моделироваться машиной Тьюринга, если этот процесс можно выразить конечным числом операций. В свою очередь, то, что возможно логи­чески (т.е. в алгоритмическом символизме), может также быть сконструировано — в принципе, но не всегда прак­тически — автоматом (т, е. алгоритмической машиной).

Теория игр. Несмотря на то, что теория игр несколь­ко отличается от других рассмотренных системных под­ходов, все же ее можно поставить в ряд наук о системах. Н ней рассматривается поведение «рациональных» игро­ков, пытающихся достичь максимальных выигрышей и ми­нимальных потерь за счет применения соответствующих стратегий в игре с соперником (или природой). Следова­тельно, теория игр рассматривает системы, включающие антагонистические силы.

Теория решений. Эта математическая теория изучает условия выбора между альтернативными возможно­стями.

Теория очередей. Рассматривает оптимизацию об­служивания при массовых запросах.

Несмотря на неоднородность и явную неполноту проведенного рассмотрения, отсутствие достаточной четкости в различении моделей (например, моделей открытой системы, цепи обратной связи) и математических формализмов (например, формализмов теорий множеств, графов, игр), такое перечисление позволяет показать, что существует целый ряд подходов к исследованию систем, а некоторые из них обладают мощными математическими методами. Проведение системных исследований означает прогресс в анализе проблем, которые ранее не изучались, считались выходящими за пределы науки или чисто философскими.

Хорошо известно, что проблема соответствия между моделью и реальностью чрезвычайно сложна. Нередко мы располагаем тщательно разработанными математически­ми моделями, но остается неясным, как можно применять их в конкретном случае. Для многих фундаментальных проблем вообще отсутствуют подходящие математические средства. Чрезмерные ожидания привели в последнее вре­мя к разочарованию. Так, кибернетика продемонстриро­вала свое влияние не только в технике, но и в фундамен­тальных науках; построила модели ряда конкретных яв­лений, показала научную правомерность телеологического объяснения и т.д. Тем не менее кибернетика не создала нового широкого «мировоззрения», оставаясь скорее рас­ширением, чем заменой механистической концепции. Те­ория информации, математические основы которой де­тально разработаны, не смогла построить интересных приложений в психологии и социологии. Большие надеж­ды возлагались на применение теории игр к вопросам войны и политики, но едва ли можно считать, что она улучшила политические решения и положение дел в мире. Эту неудачу можно было ожидать, учитывая, как мало существующие державы походят на «рациональных» игроков теории игр. Понятия и модели равновесия, гомеостазиса, регулирования приложимы для описания процес­сов функционирования систем, но они неадекватны для анализа явлений измерения, дифференциации, эволюции, уменьшения энтропии, творчества и т.д. Это осознавал Кэннон, когда допускал кроме гомеостазиса еще и гетеростазис, характеризующий такие явления. Теория откры­тых систем широко применяется для описания явлений биологии (и техники), но необходимо предостеречь про­тив неосмотрительного распространения ее на те облас­ти, для которых она не предназначена. Вполне очевидно, что отмеченные ограниченности системных научных под­ходов, существующих едва ли больше двадцати-тридцати лет, совершенно естественны. В конечном счете разоча­рование, о котором мы только что говорили, объясняется применением моделей, полезных в определенных аспектах, к проблемам метафизического и философского порядка.

Несмотря на то что математические модели обладают важными достоинствами — четкостью, возможностью строгой дедукции, проверяемостью и т.д., — не следует отказываться от использования моделей, сформулирован­ных в обычном языке.

Вербальная модель лучше, чем отсутствие модели во­обще или математическая модель, которая при насиль­ственном насаждении фальсифицирует реальность. Мно­гие теории, получившие огромное влияние в науке, явля­ются нематематическими по своему характеру (например, психоаналитическая теория), а в других случаях лежащие и их основе математические конструкции осознаются по­зднее и охватывают лишь отдельные аспекты соответству­ющих эмпирических данных (как в теории отбора).

Математика, по сути дела, сводится к установлению (алгоритмов, которые более точны, чем алгоритмы обыч­ного языка. История науки свидетельствует о том, что описание проблем на обычном языке часто предшествует их математической формулировке, т.е. отысканию алго­ритма. Приведем несколько хорошо известных примеров: знаки, используемые для обозначения чисел и счета, эво­люционировали от слов естественного языка к римским цифрам (полувербальным, несовершенным, полуалгебраическим) и далее — к арабской численной символике, в которой важное значение имеет положение знака; урав­нения первоначально формулировались в словесной фор­ме, затем — с использованием примитивного символиз­ма, который мастерски применял Диофант и другие осно­ватели алгебры, и, наконец, в современном символизме; для многих теорий, например для теории Дарвина, мате­матические основы определяются значительно позднее, чем создаются. Вероятно, лучше иметь сначала какую-то нематематическую модель со всеми ее недостатками, но охватывающую некоторый не замеченный ранее аспект исследуемой реальности и позволяющую надеяться на по­следующую разработку соответствующего алгоритма, чем начинать со скороспелых математических моделей.

Таким образом, модели, выраженные в обычном язы­ке, оставляют себе место в теории систем. Идея системы сохраняет значение даже там, где ее нельзя сформулиро­вать математически или где она остается скорее направля­ющей идеей, чем математической конструкцией. Например, у нас может не быть удовлетворительных системных понятий для социологии; однако само понимание того, что социальные сущности являются системами, а не суммами социальных атомов, или того, что история имеет дело с системами {хотя бы и плохо определенными), называемы­ми цивилизациями, которые подчиняются общим для сис­тем принципам, подразумевает важную переориентацию в рассматриваемых научных областях.

Как мы видели ранее, в рамках системного подхода существуют и механистические, и организмические тен­денции и модели, пытающиеся познать системы либо с помощью таких понятий, как «анализ», «линейная (вклю­чая круговую) причинность», «автомат» и т.д., либо при помощи понятий «целостность», «взаимодействие», «ди­намика» и им подобных. Эти два типа моделей не исклю­чают друг друга и даже могут использоваться для описа­ния одних и тех же явлений.

Итак, подводя итоги, ОТС у Л. Берталанфи выступает в двух смыслах. В широком — как основополагающая, фундаментальная наука, охватывающая всю совокупность проблем, связанных с исследованием и конструировани­ем систем. В теоретическую часть включаются 12 направлений, приведенных выше. В узком смысле — ОТС, стре­мящаяся вывести из общего определения системы как комплекса взаимодействующих элементов понятия, отно­сящиеся к организованным целым (взаимодействие, сум­ма, централизация, финальность и т.д.), и применяющая их к анализу конкретных явлений. Прикладная область общей теории систем включает, согласно Берталанфи: 1) системотехнику; 2) исследование операций; 3) инженер­ную психологию (схема 1.1).

Системные исследования — вся совокупность науч­ных и технических проблем, которые при всей их специ­фике и разнообразии сходны в понимании и рассмот­рении исследуемых ими объектов как систем, т. е. множе­ства взаимосвязанных элементов, выступающих в виде единого целого.

Соответственно этому системный подход — экспли­цитное (разъяснительное) выражение процедур представления объектов как систем и способов их описания, объяс­нения, предвидения, конструирования и т. д.

Общая теория систем, таким образом, выступает в этом случае как обширный комплекс научных дисцип­лин. Следует, однако, отметить, что при таком истолко­вании в известной мере теряется определенность задач теории систем и ее содержания. Строго научной кон­цепцией (с соответствующим аппаратом, средствами и т.д.) можно считать лишь общую теорию систем в узком смысле. Что же касается общей теории систем в широ­ком смысле, то она или совпадает с общей теорией сис­тем в узком смысле (один аппарат, одни исследовательс­кие средства и т.д.), или представляет собой действи­тельное расширение и обобщение общей теории систем в узком смысле и аналогичных дисциплин, однако тогда встает вопрос о развернутом представлении ее средств, методов, аппарата и т.д. Без ответа на этот вопрос общая теория систем в широком смысле фактически остается лишь некоторым проектом (пусть даже очень заманчи­вым) и вряд ли может быть развита в строгую научную теорию.

Схема 1.1

Состав ОТС


1. Кибернетика — базируется на принципе обратной связи и круговых причинных целях и исследует механизмы целенаправленного и самокотролируемого поведения; теория систем управления




1. Системотехника — направление в кибернетике, изучающее вопросы планирования, проектирования и поведения сложных систем различного назначения (АСУ, человеко-машинные комплексы и др.), при ко­тором составляющие системы рассматриваются во взаимодействии, несмотря на их разнородность. Ос­новным методом системотехники яв­ляется системный анализ. Централь­ное техническое звено комплекса — ЭВМ, человеческое звено — оператор. Системотехника играет важную роль в развитии инженерной психологии, так как для проектирования комп­лексов необходимо учитывать характеристики человека

2.Теория информации, вводящая понятие количества информации и развивающая принципы передачи информации

3. Теория игр — рассматривает поведение игроков, пытающихся достичь максимального выигрыша и минимальных потерь за счет применения соответствующих стратегий в игре с соперником


4. Теория решений — математический теория, изучающая условия выбора между альтернативными возможностями

2. Исследование операций — изу­чает прикладное направление кибернетики, использующее математи­ческие методы для обоснования решения во всех областях человечес­кой деятельности

5. Топология, включающая теорию сетей и теорию графов


6. Факториальный анализ


3. Инженерная психология — от­расль психологии, исследующая процессы и средства информационного взаимодействия между человеком и машиной. Инженерная психология возникла в условиях научно-технической революции, преобразовавшей психологическую структуру производственного труда, важнейшими составляющими которого стали восприятие и переработка оперативной информации, принятие решений в условиях ограниченного времени


7. ОТС в узком смысле, которая стремится вывести из общего определения системы как комплекса взаимодействующих элементов, понятий, относящихся к организованным целым (взаимодействие, сумма, финальность, централизация и т.д.) и применение их к анализу конкретных явлений
  1   2   3   4   5   6   7   8   9   ...   13


Балтийский государственный технический университет «ВОЕНМЕХ»
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации