Лекции по физике. Оптика. Элементы квантовой механики - файл n1.doc

Лекции по физике. Оптика. Элементы квантовой механики
скачать (8967 kb.)
Доступные файлы (1):
n1.doc8967kb.01.06.2012 11:58скачать

n1.doc

  1   2   3   4
Министерство образования РФ
Московская государственная академия

приборостроения и информатики

Беланов А. С.

Физика




Часть III


«Оптика»

«Элементы квантовой механики»


методическое пособие


Москва, 2003

УДК 53


Утверждено Ученым советом МГАПИ

29.06.1998г. в качестве учебного пособия

Рецензент – доцент, к.ф.-м.н. Попова Т. В.



Учебное пособие предназначено для студентов МГАПИ,

изучающих физику в течении 4-х семестров
Издательство МГАПИ

Ф и з и к а, ч а с т ь III

В этом семестре будем изучать волновые свойства упругих и электромагнитных волн, квантовые свойства электромагнитного излучения, элементы квантовой механики и атомной физики.

I. Волновые свойства упругих и электромагнитных волн

Лекция 1. Волны в упругих средах

В первой части курса были рассмотрены простейшие случаи механических колебаний. При этом мы не интересовались процессами, происходящими в среде, окружающей колебательную систему. Сейчас мы обратим на это внимание.

1.1. Упругие среды. Продольные и поперечные волны

Будем полагать, что имеем сплошную упругую среду, например, твердое тело, жидкости, газы. Для упругой среды характерно возникновение упругих деформаций при внешнем воздействии на нее. Эти деформации полностью исчезают после прекращения внешних воздействий.

Если в каком-либо месте упругой среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами эти колебания будут распространяться в среде с некоторой скоростью v.

Процесс распространения колебаний в среде называется волной. Иначе, возмущение, распространяющееся в пространстве (среде), называется волной.

Механические возмущения (деформации), распространяющиеся в упругой среде, называются упругими или механическими волнами.

Звуковыми или акустическими волнами называются упругие волны, обладающие частотами в пределах 16-20000 Гц. Волны с частотами меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук) органами слуха человека не воспринимаются.

Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных – в плоскостях, перпендикулярных направлению распространения волны.

Продольные волны могут возбуждаться в твердых, жидких и газообразных средах. Поперечные волны могут возникать только в твердых телах.

Отметим, что распространение упругих волн не связано с переносом вещества. Бегущие волны переносят энергию колебательного движения в направлении распространения волны.

1.2. Уравнение гармонической бегущей волны

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими, т.е. описываются по закону синуса или косинуса. Часто гармоническую волну называют синусоидальной.

На рис.1 представлена гармоническая поперечная волна, распространяющаяся со скоростью v вдоль оси x, т.е. приведена зависимость между смещением S частиц среды и расстоянием х этих частиц от источника колебаний О для фиксированного момента времени t.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны . Длина волны равна тому расстоянию, на которое распространится гармоническая волна за время, равное периоду колебаний Т, т.е.

. (1)

Учитывая, что частота v = 1/T получаем

= v / v. (2)

т.е. длина волны обратно пропорциональна частоте.

Уравнение такой волны в общем случае имеет вид

, (3)

Для характеристики волн используется волновое число

, (4)

где = 2/T = 2v – циклическая, (круговая) частота.

С учетом (4) получим уравнение бегущей гармонической волны

, (5)

где А – амплитуда волны, – фаза волны, 0 – начальная фаза.

Основываясь на формуле Эйлера (), уравнение (5) можно записать в экспоненциальной (комплексной) форме

, (6)

где физический смысл имеет лишь действительная часть выражения (6). Такая форма представления волны существенно облегчает математический действия.

1.3.Фронт волны, волновые поверхности, фазовая скорость

Волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью (поверхностью постоянных фаз, фазовой поверхностью).

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени – один.

Гармоническая бегущая волна (5) является плоской волной, т.к. ее волновые поверхности представляет собой совокупности плоскостей, параллельных друг другу и перпендикулярных оси х.

Уравнение гармонической сферической волны имеет вид

, (7)

где r – радиальная координата. При распространении волны в непоглощающей среде A(r) ~ 1/r.

Скорость v распространения гармонической волны называется фазовой скоростью. Она равна скорости перемещения волновой поверхности. Например, в случае плоской гармонической волны из условия следует, что

. (8)

1.4. Волновое уравнение

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением – дифференциальным уравнением в частных производных.

, (9)


где (10)

 – оператор Лапласа, v фазовая скорость.

Решением уравнения (9) является уравнение любой волны (плоской, сферической и т.д.). В частности, для анализируемой здесь плоской гармонической волны (5), которая не зависит от координат y и z волновое уравнение принимает вид

. (11)

Соответствующей подстановкой можно убедится, что уравнению (11) удовлетворяет уравнение (5).

1.5. Принцип суперпозиции волн. Групповая скорость

Предполагается, что гармоническая волна вида (5) не имеет ни начала, ни конца во времени и пространстве.

Реальная волна ограничена во времени и в пространстве, поэтому является негармонической, оказывается такую волну можно заменить эквивалентной ей системой гармонических волн, которые распространяются в линейной среде независимо друг от друга.

Это утверждение справедливо для волн любой природы и носит название принципа суперпозиции.

Негармоническую волну заменяют системой гармонических волн, частоты которых мало отличаются друг от друга, т.е. негармоническую волну представляют в виде группы волн или волнового пакета.

Интерес представляет скорость распространения огибающей этой группы волн (по существу, скорость распространения энергии волнового пакета или скорость передачи сигнала). Эту скорость называют групповой скоростью. Можно показать, что групповая скорость

u=d /dk (12)

и она связана с фазовой скоростью соотношением

(13)

Для гармонической волны =0 и скорость переноса энергии (групповая скорость) равна фазовой скорости, т.е. u=v. (14)

1.6. Энергия бегущей волны. Вектор плотности потока энергии

Упругая среда, в которой распространяется волна, обладает как кинетической энергией колебательного движения частиц, так и потенциальной энергией, обусловленной деформацией среды. Можно показать, что объемная плотность энергии для плоской бегущей гармонической волны (5)

, (15)

где =dm/dV – плотность среды, т.е. периодически изменяется от 0 до А22 за время /=Т/2.

Среднее значение плотности энергии за промежуток времени /=Т/2

. (16)

Для характеристики переноса энергии вводят понятие вектора плотности потока энергии – вектор Умова.

Выведем выражение для него.

Если через площадку S, перпендикулярную к направлению распространения волны, переносится за время t энергия W, то плотность потока энергии

, (17)

где V=S ut – объем элементарного цилиндра, выделенного в среде.

Поскольку скорость переноса энергии или групповая скорость есть вектор, то и плотность потока энергии можно представить в виде вектора

, Вт/м2. (18)

Этот вектор ввел профессор Московского университета Н.А. Умов в 1874 г.

Среднее значение его модуля называют интенсивностью волны

. (19)

Для гармонической волны u=v [cм.(14)], поэтому для такой волны в формулах (17)-(19) u можно заменить на v.

1.7. Стоячие волны

Если навстречу друг другу распространяются две гармонические волны и , то образуется стоячая волна

. (20)

Исследуем сначала множитель coskx=cos2x/. В точках x=(1+2n)/4, где n=0,1,2..., coskx=0 и, следовательно, S=0. Эти точки не колеблются и поэтому называются узлами стоячей волны (см. рис.3). Расстояние между соседними узлами равно /2. Точки максимальной амплитуды стоячей волны называются пучностями. Их координаты x=n/2. Расстояние между соседними пучностями равно /2.

На рис. 3 сплошной линией изображена зависимость от х, соответствующая моменту времени t (например, t=0), при котором cost= cost/T=1. Через четверть периода cos=0 и S=0. Еще через время, равное T/4, cos= -1, и соответствующая зависимость S от х изображена штриховой линией (см. рис. 3). Спустя t=3T/4 S=0 и через t=T все повторится.

В случае стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут энергию в противоположных направлениях. Т.о., стоячая волна характеризует колебательное состояние среды.

В заключении отметим, что несмотря на разнообразие волновых явлений, они описываются одинаковыми законами (математичеcкими уравнениями). Это позволяет, например, перенести полученные в данной лекции закономерности для упругих волн на электромагнитные волны.

Лекция 2. Электромагнитные волны

Во второй части курса физики изучались уравнения Максвелла, которые в дифференциальной форме (т.е. справедливые для бесконечно малого объема среды) имели вид:

(1)

где и – векторы напряженности электрического и магнитного полей, которые измеряются соответственно в В/м и А/м; – вектор магнитной индукции (Тл), – вектор электрического смещения (Кл/м2), – вектор плотности тока проводимости (А/м2), – объемная плотность заряда (Кл/м3).

Кроме того, необходимо учитывать, что

(2)

где 0=1/(49109) Ф/м, 0=410-7Гн/м – электрическая и магнитная постоянные; ?, ? – диэлектрическая и магнитная проницаемости среды; – удельная электропроводность среды (величина, обратная удельному сопротивлению), а также, что

, (3)

c – скорость света в вакууме, с = 3108 м/с.

Скорость распространения электромагнитных волн в среде

, (4)

где , (5)

n – абсолютный показатель преломления среды, он показывает, во сколько раз скорость света v в среде меньше скорости света в вакууме с.

Из первого уравнения Максвелла следует, что переменное (изменяющееся во времени) магнитное поле вызывает переменное электрическое поле, а оно [согласно второму уравнению (1)], изменяясь, вызывает магнитное поле и т.д. Нельзя создать только электрическое поле, не вызвав магнитного поля и наоборот. Т.е. электрическое и магнитное поля взаимосвязаны. Они образуют единое электромагнитное поле, которое распространяется в пространстве (среде) в виде электромагнитных волн.

2.1. Волновые уравнения

Электромагнитные волны удовлетворяют уравнениям аналогичным (1.9)*, которые выводятся из уравнений Максвелла с применением векторного равенства



Для линейной однородной изотропной среды при отсутствии токов () и зарядов (=0) волновые уравнения для векторов и имеют вид

, , (6)

где и – операторы Лапласа, примененные к векторам и соответственно, они выражаются через операторы Лапласа от скалярных функций
(7)

где – единичные векторы (орты).

В (1.10) приведено выражение для оператора Лапласа, примененного к скалярной функции. Будем далее предполагать, что электромагнитная волна распространяется в направлении оси x (см. рис. 1) со скоростью и при этом вектор колеблется в одной плоскости, например, в плоскости xoy (эту плоскость называют плоскостью поляризации). Тогда вектор будет колебаться в перпендикулярной к ней плоскости xoz [это следует из двух первых уравнений (1)], т.е. в такой линейно поляризованной волне векторы и имеют только по одной составляющей, т.е. .

Следует заметить, что векторы , и образуют правую тройку взаимноперпендикулярных векторов (т.е. направление вектора совпадает с направлением поступательного движения правого буравчика, рукоятка которого вращается от к по наикратчайшему пути).

Для такой линейно поляризованной волны волновые уравнения (6) упростятся и примут вид

, , (8)

где индексы y и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей y и z.

2.2. Уравнение плоской гармонической волны

Уравнениям (8) удовлетворяют, в частности, плоские электромагнитные гармонические волны, описываемые уравнениями

(9)

где Е0, Н0 – амплитуды напряженностей электрического и магнитного полей; =2/Т=2 – круговая частота (с-1); Т – период колебаний (с); =1– частота колебаний (Гц); k=/v=2/ – волновое число; v – скорость распространения волны, для нее скорость переноса энергии (групповая скорость) u равна фазовой скорости v этой волны [см.(1.14)]; =vT – длина волны, для вакуума

=сT=с/, (10)

0 – начальные фазы колебаний в точках с координатой x = 0.

В уравнениях гармонической волны (9) 0 – одинаково, т.к. колебания электрического и магнитного векторов в электромагнитной волне происходят в одинаковой фазе [это следует из (1)].

На рис.2. показаны векторы и поля плоской линейно поляризованной волны в различных точках луча (оси ох) в один и тот же момент времени. Плоскость, проходящая через электрический вектор и луч (или вектор ), называется плоскостью поляризации.

Электромагнитную гармоническую волну часто записывают в экспоненциальной (комплексной) форме аналогично (1.6), где вместо s и А0 будет Е и Е0, Н и Н0 соответственно для электрического и магнитного векторов.

Электромагнитная волна так же, как упругая волна (см. параграф 1.3) характеризуется фронтом волны, волновой поверхностью. В отличие от упругих волн, которые распространяются только в среде (в вакууме упругие волны не могут распространяться, т.к. в нем нет частиц, которые совершали бы колебания), электромагнитные волны распространяются не только в среде, но и в вакууме, т.к. они представляют собой процесс распространения колебаний векторов и в пространстве.

Как и в случае упругих волн по форме волновых поверхностей или волновому фронту различают плоские, сферические, цилиндрические и прочие электромагнитные волны.

Обычно в практике используются пучки электромагнитной энергии (света) конечного поперечного сечения. Конечный, но достаточно узкий пучок будем называть лучом. Луч всегда перпендикулярен волновому фронту.

Из уравнений Максвелла (1) следует, что электромагнитные волны являются поперечными волнами, т.к. векторы и колеблются перпендикулярно к направлению распространения волны (см. рис. 1 и 2).

Из (1) также следует, что

, (11)

2.3. Энергия электромагнитной волны

Объемная плотность энергии электромагнитного поля в линейной изотропной среде равна сумме объемных плотностей энергии электрического и магнитного полей [см. Конспект лекций по физике, ч.II, формулы (5.17) и (11.17) соответственно], поэтому

(12)

С учетом соотношений (11) и (4) из (12) следует, что

, (13)

где v – скорость распространения электромагнитной волны в среде.

В случае плоской линейно поляризованной монохроматической волны (9) объемная плотность энергии волны

(14)

т.е значение w в каждой точке поля периодически изменяется от 0 до wмакс=Е0Н0/v за промежуток времени   .
  1   2   3   4


Министерство образования РФ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации