Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n122.doc

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n122.doc

1   2   3   4   5   6   7   8   9   ...   16
Параметры эффекта. Ряд (3.1.4) при усечении можно записать в следующем виде:

GN() = [cos((2n+1)) d] = [cos((2n+1))] d.

Сумма косинусного ряда равна sin[2(N+1)]/(2sin ). Отсюда:

GN() = . (3.1.5)

Для определения местоположения максимумов и минимумов осцилляций функции (3.1.5) приравняем к нулю ее первую производную (подинтегральную функцию), при этом:

k = ±k/(2(N+1)), k = 1, 2, ...

Соответственно, амплитудные значения первых (максимальных) осцилляций функции приходится на точки 1 = ±/(2(N+1)), вторых (противоположных по полярности) - на точки 2 = ±/(N+1). Период пульсаций равен 21 = (N+1) = , т.е. интервалу дискретизации спектра при равном количестве отсчетов оператора фильтра и его спектра. Функция пульсаций (при ее выделении) является нечетной относительно скачка. Соответственно, при скачке функции G() на произвольной частоте главного частотного диапазона значения k являются значениями k относительно частоты скачка. Амплитудные значения функции в точках 1 и 2 (при подстановках 1 и 2 верхним пределом в (3.1.5)) практически не зависят от количества членов ряда N и равны:

GN(1) » 0.5+0.09, GN(2) » 0.5-0.05.

Амплитуда последующих осцилляций постепенно затухает.

Таким образом, для усеченных рядов Фурье предельные значения максимальных выбросов по обе стороны от скачка и следующих за ними обратных выбросов при единичной амплитуде разрыва функции достигают соответственно 9% и 5% значения амплитуды скачка. Кроме того, сам скачок функции из собственно скачка преобразуется в переходную зону, длина которой между точками максимальных выбросов по обе стороны скачка равна /(N+1), а по уровню исходных значений функции на скачке (в данном случае от -0.5 до 0.5) порядка (2/3)/(N+1). Это явление типично для всех функций с разрывом.

Можно рассмотреть это явление и с других позиций. Как известно, произведение функций отображается в частотном представлении сверткой их фурье-образов. Отсюда:

hn = h(n) ПN(n) у H() ③ ПN() = HN(). (3.1.6)




Рис. 3.1.3. Свертывающие (частотные) весовые функции.
Правая часть выражения (3.1.6) и отражает математическую сущность явления Гиббса. Ограничение массива функции определенным количеством членов (умножением на П-окно, прямоугольную селектирующую функцию) отображается сверткой частотной характеристики функции с частотной характеристикой селектирующей функции (которую часто называют свертывающей функцией). Частотная характеристика прямоугольной функции хорошо известна, как функция отсчетов sin(x)/x, x = (2N+1)/2, и для П-импульса длиной 2N+1 приведена на рис. 3.1.3 (для ряда значений N). Свертка этой частотной функции (Фурье-образа селектирующей функции) с частотной характеристикой усекаемых функций и порождает явление Гиббса на резких скачках частотных характеристик. Чем больше N, тем уже центральный пик спектра прямоугольного импульса, и, соответственно, меньше ширина переходной зоны, которая формируется вместо скачков функций. Амплитуда самих осцилляций (по номеру от центрального пика) имеет постоянное значение и не зависит от N.

Последствия для практики. При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т.к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот.

Попытаемся реализовать передаточную функцию фильтра следующего вида:

H(f) = 1, при -0.2 Ј f Ј 0.2, H(f) = 0, при -0.2 > f > 0.2,

в главном частотном диапазоне от -0.5 до 0.5. Функция четная, коэффициенты ряда Фурье представлены только косинусными членами:

an = 4cos(2fn) df = 2 sin(0.4n)/(n).

Передаточная функция:

H(f) = 0.4 + 2sin(0.4n) cos(2fn)/(n). (3.1.7)

Результат усечения ряда Фурье (3.1.7) до N = 7 приведен на рис. 3.1.4.




Рис. 3.1.4. Передаточные функции ФНЧ.
Как видно на рисунке, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации.

Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу типовых. Вырезаются из профилей и площадей участки съемки с аномальными данными для их более детальной обработки и интерпретации. При анализе усекаются корреляционные функции, и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощности, и пр. Во всех этих случаях мы можем столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным (снижение разрешающей способности), и полезным (повышение устойчивости спектров). В самих усекаемых данных мы не видим этих явлений, т.к. они проявляется в изменении их частотного образа, но при обработке данных, основной целью которой, как правило, и является изменение частотных соотношений в сигналах, последствия этих явлений могут сказаться самым неожиданным образом.

На рис. 3.1.5 показан другой пример искажений сигнала при усечении. Исходный аналоговый сигнал был вырезан из массива данных на интервале k = {0..60}, дискретизирован и переведен в цифровой форме в спектральную область для обработки. Дискретизация сигнала вызвала периодизацию его спектра, а дискретизация спектра вызвала периодизацию его динамического представления. Но на точках k=0 и k=60 в периодическом повторении исходного сигнала при усечении образовался скачок функции с бесконечным частотным спектром, а главный диапазон спектра дискретизированного сигнала ограничен интервалом его дискретизации (N=/t). Следовательно, спектр сигнала является искаженным за счет наложения спектров боковых периодов, а при восстановлении аналогового сигнала по спектру главного диапазона он восстанавливается из усеченного спектра. Это приводит к появлению явления Гиббса на обоих концах вырезанного сигнала (за счет периодизации сигнала), что наглядно видно на рис. 3.1.5.



Рис. 3.1.5.

Практически это означает, что при частотной обработке вырезанного сигнала будет обрабатываться не спектр исходного сигнала, а спектр, которому соответствует сигнал, восстанавливаемый по данному спектру с наложенным явлением Гиббса.

3.2. Весовые функции /16/.

Естественным методом нейтрализации нежелательных эффектов усечения сигналов во временной области (и любой другой области аргументов) является изменение окна селекции сигнала таким образом, чтобы частотная характеристика окна селекции при свертке как можно меньше искажала спектр сигнала. Что последнее возможно, показывает, например, даже такая простая модификация прямоугольной функции, как уменьшение в два раза значений ее крайних членов. Фурье-образ модифицированной П-функции уже рассматривался нами в составе сглаживающих фильтров МНК 1-го порядка, отличается от обычной П-функции с тем же размером окна выходом в ноль на частоте Найквиста и несколько меньшей амплитудой осцилляций при небольшом расширении главного максимума.

Нейтрализация явления Гиббса в частотной области. Рассмотрение продолжим с формулы (3.1.2) при усечении произвольного оператора фильтра h(n) прямоугольным селектирующим окном ПN(n). Период осцилляций суммы усеченного ряда Фурье (3.1.2) примерно равен периоду первого отброшенного члена ряда. С учетом этого фактора осцилляции частотной характеристики могут быть существенно сглажены путем усреднения по длине периода осцилляций в единицах частоты, т.е. при нормированной свертке с Пr( импульсом, длина которого равна периоду осцилляций r = 2/(N+1). Эта свертка отобразится во временной области умножением коэффициентов фильтра h(n) на множители, которые являются коэффициентами преобразования Фурье частотной П-образной сглаживающей функции Пr():

H'N() = HN() ③ Пr() у hnN(n) = h(n) ПN(n)N(n),

p(n) = ПN(n)N(n) = sinc(n/(N+1)), |n| Ј N. (3.2.1)

Эта операция носит название сглаживания Ланцоша. Произведение ПN(n) N(n) ? N(n) представляет собой новое весовое окно селекции p(n) взамен прямоугольного окна. Функцию N(n) обычно называют временной весовой функцией (окном). Вид и частотная характеристика весового окна Ланцоша в сопоставлении с прямоугольным окном приведены на рис. 3.2.1.

Как видно на рисунке, частотная характеристика весовой функции Ланцоша по сравнению с П-образной функцией имеет почти в 4 раза меньшую амплитуду осцилляций, но при этом ширина главного максимума увеличилась примерно на четверть. Отметим, однако, что если амплитуда осцилляций (в единицах амплитуды главного максимума) определяется выбранным типом весовой функции, то ширина главного максимума, которой определяется ширина переходной зоны (вместо скачка функции), зависит от размеров весового окна и соответственно может изменяться под поставленные условия (уменьшаться увеличением размера 2N+1 весового окна).



Рис. 3.2.1. Весовая функция Ланцоша.

Основные весовые функции. В настоящее время известны десятки различных по эффективности весовых функций. В идеальном случае хотелось бы иметь весовую свертывающую функцию с минимальной амплитудой осцилляций, высокую и узкую в главном максимуме.

В таблицах 3.2.1 и 3.2.2 приведены формулы и основные спектральные характеристики наиболее распространенных и часто используемых весовых окон. Носители весовых функций, в принципе, являются неограниченными и при использовании в качестве весовых окон действуют только в пределах окна и обнуляются за его пределами (как и в (3.2.1)), что выполняется без дальнейших пояснений. Для упрощения записи формулы приводятся в аналитической, а не в дискретной форме, с временным окном 2, симметричным относительно нуля (т.е. 0). При переходе к дискретной форме окно 2 заменяется окном 2N+1 (полное количество точек дискретизации выделяемой сигнальной функции), а значения t - номерами отсчетов n (t = nt). Следует заметить, что большинство весовых функций на границах окна (n = N) принимают нулевые или близкие к нулевым значения, т.е. фактическое окно усечения данных занижается на 2 точки. Последнее исключается, если принять 2= (2N+3)t.

Таблица 3.2.1.

Основные весовые функции

Временное окно

Весовая функция

Фурье-образ

Естественное (П)

П(t) = 1, |t|ЈП(t) t

П() = 2 sinc[]

Бартлетта ()

b(t) = 1-|t|/

B() =  sinc2(/2).

Хеннинга, Ганна

p(t) = 0.5[1+cos(t/)]

0.5П()+0.25П(+/)+0.25П(-/)

Хемминга

p(t) = 0.54+0.46 cos(t/)

0.54П()+0.23П(+/)+0.23П(-/)

Карре (2-е окно)

p(t) = b(t) sinc(t/)

·B()*П(), П() = 1 при ||</

Лапласа-Гаусса

p(t) = exp[-2(t/)2/2]

[(/) exp(-22/(22))] * П()

Кайзера-Бесселя



p(t) =,

Jo[x] =[(x/2)k/k!]2

Вычисляется преобразованием Фурье.

Jo[x] - модифицированная функция

Бесселя нулевого порядка


Таблица 3.2.2.

Характеристики спектров весовых функций

Параметры

Ед.

изм.

П-

окно

Барт-

летт

Лан-цош

Хен-

нинг

Хемминг

Кар-

ре

Лаплас

Кайзер

Амплитуда:

Главный пик

1-й выброс(-)

2-й выброс(+)

Ширина Гл. пика

Положения:

1-й нуль

1-й выброс

2-й нуль

2-й выброс




%Гл.п.

- “ -

/
/

/

/

/


2

0.217

0.128

0.60
0.50

0.72

1.00

1.22


1

-

0.047

0.89
1.00

-

-

1.44


1.18

0.048

0.020

0.87
0.82

1.00

1.29

1.50


1

0.027

0.0084

1.00
1.00

1.19

1.50

1.72


1.08

0.0062

0.0016

0.91
1.00

1.09

1.30

1.41


0.77

-

-

1.12
-

-

-

-


0.83

0.0016

0.0014

1.12
1.74

1.91

2.10

2.34


0.82

.00045

.00028

1.15
1.52

1.59

1.74

1.88




Рис. 3.2.2. Примеры весовых функций.
Сравнительный вид весовых функций приведен на рис. 3.2.2. Расчет функций проведен с исключением нулевых значений на границах весового окна.

Спектральные окна Бартлетта и Карре не имеют отрицательных выбросов и применяются, в основном, для усечения корреляционных функций. Функция Карре не имеет нулей и представляет собой положительно убывающую функцию. Функции Хеннинга и Хемминга примерно одного класса, функция Хемминга является улучшенным вариантом функции Хеннинга. Частотные образы функций Бартлетта и Хемминга приведены на рис. 3.2.3.



Рис. 3.2.3. Частотные функции весовых окон.

Весовые окна Лапласа и Кайзера - усеченные функции соответственно Гаусса и Бесселя. Степень усечения зависит от параметра . Характеристики функций, приведенные в таблице 3.2.2, действительны при =3 для окна Лапласа и =9 для окна Кайзера. При уменьшении значения  крутизна главного максимума сглаживающих функций увеличивается (ширина пика уменьшается), но платой за это является увеличение амплитуды осцилляций.



Рис. 3.2.4. Частотные функции весовых окон.

Функции Лапласа и Кайзера являются универсальными функциями. По-существу, их можно отнести к числу двупараметровых: размером окна 2 (числом N) может устанавливаться ширина главного максимума, а значением коэффициента - относительная величина осцилляций на частотной характеристике весовых функций, причем, вплоть до осцилляций П-окна при =0. Это обусловило их широкое использование, особенно при синтезе операторов фильтров.

Попутно заметим, что достаточно гладкие частотные характеристики весовых функций позволяют использовать их в качестве сглаживающих низкочастотных НЦФ.

литература

16. Макс Ж. Методы и техника обработки сигналов при физических измерениях: В 2-х томах. - М.: Мир, 1983.

24. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с. [kgl]
Тема 7.НЕРЕКУРСИВНЫЕ ЧАСТОТНЫЕ ЦИФРОВЫЕ ФИЛЬТРЫ.

Недостаточно овладеть премудростью, нужно уметь пользоваться ею.

Марк Туллий Цицерон. О высшем благе и высшем зле.

Римский сенатор и философ, 1 в.д.н.э.

Мало пользы от теории бокса, пока сам не научишься махать кулаками.

Евгений Буцко. Идеология белых воротничков.

Радиоинженер, геофизик Уральской школы, ХХ в.

Содержание

1. Общие сведения. Типы фильтров. Методика расчетов нерекурсивных цифровых фильтров. Фильтры с линейной фазовой характеристикой.

2. Идеальные частотные фильтры. Импульсная реакция фильтров.

3. Конечные приближения идеальных фильтров. Ограничение окна операторов фильтров. Применение весовых функций для нейтрализации явления Гиббса. Основные весовые функции. Весовая функция Кайзера.

4. Гладкие частотные цифровые фильтры. Принцип синтеза фильтров.

5. Дифференцирующие цифровые фильтры. Передаточная функция. Точность дифференцирования. Применение весовых функций. Фильтры с линейной групповой задержкой.

6. Альтернативные методы расчета НЦФ. Оптимизационные методы. Метод частотной выборки.

Введение

Нерекурсивные фильтры реализуют алгоритм свертки двух функций: yk = hn ③ xk-n, где xk – массив входных данных фильтра, hn – оператор (ядро, импульсный отклик) фильтра, k и n – нумерация числовых значений массива данных и числовых значений коэффициентов фильтра, k = 0, 1, 2, … ,K; n = 0, 1, 2, … ,N; K ? N. Значения выходных отсчетов свертки yk для любого аргумента k определяются текущим и "прошлыми" (до k-N) значениями входных отсчетов. Такой фильтр называется нерекурсивным цифровым фильтром (НЦФ). Интервал [0-N] оператора получил название "окна" фильтра. Окно фильтра составляет N+1 отсчет, фильтр является односторонним каузальным, т.е. причинно обусловленным текущими и "прошлыми" значениями входного сигнала, и выходной сигнал не опережает входного. В общем случае, каузальный фильтр меняет в спектре сигнала состав гармоник, их амплитуды и фазы.

Каузальный фильтр может быть реализован физически в реальном масштабе времени. Начало фильтрации возможно только при задании определенных начальных условий – N значений отсчетов для точек x(k-n) при k
При обработке данных на ЭВМ ограничение по каузальности снимается. В программном распоряжении фильтра могут находиться как "прошлые", так и "будущие" (k+n, до k+N') значения входной последовательности отсчетов относительно текущей точки вычислений k, при этом для завершения свертки (аналогично началу) требуется N' точек конечных условий при (k+n)>K. При N' = N и h(-n) = h(n) фильтр называется двусторонним симметричным фильтром. Симметричные фильтры, в отличие от односторонних, не изменяют фазы обрабатываемого сигнала.

7.1. Общие сведения.

Основное свойство любого фильтра – его частотная (frequency response) и фазовая характеристики. Они показывают, какое влияние фильтр оказывает на амплитуду и фазу различных гармоник обрабатываемого сигнала.

К наиболее известным типам нерекурсивных цифровых фильтров (НЦФ) относятся частотные фильтры, алгоритм которых для симметричных НЦФ, не изменяющих фазу сигналов, имеет вид:

yk =hn sk-n.

Типы фильтров. В зависимости от вида частотной характеристики выделяют три основных группы частотных фильтров: ФНЧ - фильтры низких частот (low-pass filters) - пропускание низких и подавление высоких частот во входном сигнале, ФВЧ - фильтры высоких частот (high-pass filters) - пропускание высоких и подавление низких частот, и ПФ - полосовые фильтры, которые пропускают (band-pass filters) или подавляют (band-reject filters) сигнал в определенной частотной полосе. Среди последних в отдельную группу иногда выделяют РФ - режекторные фильтры, понимая под ними фильтры с подавлением определенной гармоники во входном сигнале, и СФ – селекторные фильтры, обратные РФ.

Если речь идет о подавлении определенной полосы частот во входном сигнале, то такие фильтры называют заградительными. Ни теоретического, ни практического интереса к методам их расчета обычно не проявляется, так как их частотная характеристика обычно задается инверсией характеристики полосового фильтра (1-Hп()) и каких-либо дополнительных особенностей при своем проектировании не имеет.

Схематические частотные характеристики фильтров приведены на рисунке 7.1.1. Между частотными интервалами пропускания и подавления сигнала существует зона, которая называется переходной. Ширина переходной зоны определяет резкость характеристики фильтра. В этой зоне амплитудная характеристика монотонно уменьшается (или увеличивается) от полосы пропускания до полосы подавления (или наоборот).



Рис. 7.1.1. Типы основных частотных фильтров.

Практика проектирования цифровых фильтров базируется, в основном, на синтезе фильтров низких частот. Все другие виды фильтров могут быть получены из фильтров низких частот соответствующим преобразованием. Так, например, фильтр высоких частот может быть получен инверсией фильтра низких частот - вычислением разности между исходным сигналом и результатом его фильтрации низкочастотным НЦФ:

y(k) = s(k) h(n) s(k-n).

Отсюда, условие инверсии симметричного низкочастотного фильтра в высокочастотный:

hв(0) = 1-hн(0), hв(n) = -hн(n) при n№0.

Применяется также способ получения фильтров высоких частот из низкочастотных фильтров путем реверса частоты в передаточной функции низкочастотного фильтра, т.е. заменой переменной  на переменную ' = (при t = 1). Для симметричных фильтров, содержащих в передаточной функции только косинусные члены аргумента , в результате такой операции будем иметь:

cos n(-) = cos n cos n = (-1)n cos n.

Последнее означает смену знака всех нечетных гармоник передаточной характеристики фильтра и, соответственно, всех нечетных членов фильтра. Физическую сущность такой операции инверсии спектра легко понять на постоянной составляющей сигнала. При изменении на противоположный знака каждого второго отсчета постоянной величины это постоянной значение превращается в "пилу", частота которой равна частоте Найквиста главного частотного диапазона (отсчеты по амплитудным значениям этой частоты), равно как и наоборот, отсчеты гармоники сигнала на частоте Найквиста (знакочередующиеся в силу сдвига по интервалам дискретизации на ) превращаются в постоянную составляющую.

Полосовой фильтр может реализоваться последовательным применением ФНЧ и ФВЧ с соответствующим перекрытием частот пропускания. В математическом представлении это означает последовательную свертку массива данных с массивами коэффициентов hн - низкочастотного, и hв - высокочастотного фильтров:

vk = hн(n) ③ s(k-n), yk = hв(n) ③ vk = hн(n) ③ hв(n) ③ s(k-n).

Так как операция свертки коммутативна, то вместо отдельных массивов коэффициентов ФНЧ и ФВЧ их сверткой может быть определен непосредственно массив коэффициентов полосового фильтра: hn = hн(n) ③ hв(n).

Полосовой режекторный фильтр также может быть получен методом инверсии полосового фильтра. Одночастотные режекторные фильтры обычно выполняются на основе простых рекурсивных цифровых фильтров, более эффективных для данных целей.

Часто к фильтрам предъявляются более сложные требования. Например, фильтр может иметь несколько частотных полос пропускания с разными коэффициентами усиления, а для полос непропускания могут быть заданы разные коэффициенты подавления. Иногда требуемая частотная характеристика фильтра задается вообще произвольной кривой.

Методика расчетов НЦФ. Обычно при фильтрации сигналов задается требуемая частотная характеристика фильтра. Задачей является построить фильтр, отвечающий заданным требованиям и провести фильтрацию. Зачастую бывает невозможно построить в точности заданный фильтр, и выполняется фильтр, близкий по характеристикам к заданному.

Существует много способов построения фильтров с заданной частотной характеристикой. Наиболее простой из них – проектирование фильтров с линейной фазой с помощью весовых окон. Этот способ является универсальным и позволяет получить фильтр с любой заданной частотной характеристикой. Отметим, однако, что с помощью других, математически более строгих и совершенных методов, иногда удается построить фильтр меньшей длины, удовлетворяющий тем же требованиям к частотной характеристике.

Наиболее простой является методика расчетов программных двусторонних симметричных фильтров без изменения фазы выходного сигнала относительно входного. В самом общем виде она включает:

1. Задание идеальной амплитудно-частотной характеристики передаточной функции фильтра. Термин идеальности понимается здесь в том смысле, что на характеристике указываются полосы пропускания и подавления частот с коэффициентами передачи 1 и 0 соответственно без переходных зон.

2. Расчет функции импульсного отклика идеального фильтра (обратное преобразование Фурье частотной характеристики фильтра). При наличии скачков функций на границах пропускания/подавления импульсный отклик содержит бесконечно большое количество членов.

3. Ограничение функции отклика до определенного количества членов, при этом на передаточной характеристике фильтра возникает явление Гиббса – осцилляции частотной характеристики с центрами на скачках.

4. Для нейтрализации явления Гиббса производится выбор весовой функции и расчет ее коэффициентов, на которые умножаются коэффициенты функции отклика фильтра. Результатом данной операции являются значения коэффициентов оператора фильтра (рабочий импульсный отклик фильтра). По существу, операции 3 и 4 представляют собой усечение ряда Фурье динамического (временного) представления передаточной функции фильтра определенной весовой функцией (умножение на весовую функцию).

5. С использованием полученных значений коэффициентов оператора фильтра производится построение его частотной характеристики и проверяется ее соответствие поставленной задаче.

При проектировании симметричных нерекурсивных фильтров нет необходимости базироваться на расчете фильтров низких частот с последующим их преобразованием, при необходимости, в фильтры верхних частот или полосовые фильтры. Расчет непосредственно полосового фильтра достаточно прост, а НЧ- и ВЧ-фильтры являются частным случаем полосового фильтра с одной верхней или одной нижней граничной частотой.

Фильтры
1   2   3   4   5   6   7   8   9   ...   16


Параметры эффекта
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации