Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n122.doc

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n122.doc

1   2   3   4   5   6   7   8   9   ...   16
4.2. Интегрирование данных /24/

Интегрирование сигналов реализуется рекурсивными цифровыми фильтрами. Рассмотрим примеры анализа интегрирующих операторов.

Как известно, для точной операции интегрирования финитных сигналов в общем случае действительно преобразование:

s(t) dt « (1/j) S().

Это выражение в правой части имеет особую точку при  = 0 и, соответственно, весовой дельта-импульс на нулевой частоте, пропорциональный постоянной составляющей сигнала. Оператор интегрирования в частотной области (1/j) при  > 1 ослабляет в амплитудном спектре высокие частоты, а при 0 < <1 усиливает низкие. Фазовый спектр сигнала смещается на -900 для положительных частот и на 900 для отрицательных.

Наиболее простыми и распространенными на практике алгоритмами интегрирования являются цифровые аналоги формул трапеций, прямоугольников и Симпсона.

Алгоритм интегрирования по формуле трапеций при нулевых начальных условиях:

yk+1 = yk+(sk+1+sk)/2. (4.2.1)




Рис. 4.2.1. Частотные характеристики фильтров
Принимая sk = exp(jt) и yk = H() exp(jt), подставляем сигналы в (4.2.1) при tk = kt, t = 1 и решаем относительно H(). Получаем:

H() = cos(/2)/[2j sin(/2)].

Частотная характеристика фильтра, а также фильтров интегрирования по другим формулам, приведена на рис. 4.2.1. В связи с накоплением результатов по всему предыдущему циклу суммирования и большим диапазоном значений модуля АЧХ характеристики фильтра более удобными, представительными и информационными являются частотные функции коэффициентов соответствия фактического интегрирования истинному:

K() = H()exp(jt)/[(1/j)exp(jt)].

K() = cos(/2)[(/2)/sin(/2)]. (4.2.2)

Графики коэффициентов соответствия всех фильтров интегрирования приведены на рис. 4.2.2

Оператор интегрирования по формуле прямоугольников (интерполяционное среднеточечное):

yk+1 = yk+sk+1/2. (4.2.3)

После аналогичных подстановок сигнала и преобразований получаем:

K() = (/2)/sin(/2).

При численном интегрировании по формуле Симпсона уравнение фильтра имеет вид:

yk+1 = yk-1+(sk+1+4sk+sk-1)/6. (4.2.4)

Частотный анализ фильтра проведите самостоятельно. Контроль:

K() = (2+cos )/[3 sin()/].




Рис. 4.2.2. Коэффициенты соответствия.
Наиболее простые формулы цифрового интегрирования (трапеций и прямоугольников) ведут себя различным образом в главном частотном диапазоне. Формула прямоугольников завышает результаты на высоких частотах, а формула трапеций - занижает. Эти особенности легко объяснимы. Для одиночной гармоники площадь трапеции по двум последовательным отсчетам всегда меньше, чем площадь с выпуклой дугой гармоники между этими отсчетами, и разница тем больше, чем больше частота. В пределе, для гармоники с частотой Найквиста, отсчеты соответствуют знакочередующемуся ряду (типа 1, -1, 1, -1, ... или любые другие значения в зависимости от амплитуды и начального фазового угла) и при нулевых начальных условиях суммирование двух последовательных отсчетов в формуле (4.2.1) будет давать 0 и накопления результатов не происходит. Интегрирование по площади прямоугольников с отчетом высоты по центральной точке между двумя отсчетами всегда ведет к завышению площади прямоугольника относительно площади, ограниченной выпуклой дугой гармоники.

Формула Симпсона отличается от формул трапеций и прямоугольников более высокой степенью касания единичного значения, что обеспечивает более высокую точность интегрирования в первой половине главного диапазона. Однако на высоких частотах погрешность начинает резко нарастать вплоть до выхода на бесконечность на конце диапазона (полюс в знаменателе передаточной функции рекурсивного фильтра на частоте Найквиста).

Эти особенности интегрирования следует учитывать при обработке данных сложного спектрального состава. Пример интегрирования сигнала и изменения его спектра приведен на рис. 4.2.3.



Рис. 4.2.3.

литература

24. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с. [kgl]
Тема 5. ФИЛЬТРАЦИЯ СЛУЧАЙНЫХ СИГНАЛОВ.

Как бы ни кичились люди величием своих знаний, последние часто бывают следствием не великих замыслов, а простой случайности.

Франсуа де Ларошфуко. Французский писатель моралист. XVII в.

Но чтобы извлекать из мусора случайностей, которые на тебя сваливаются, что-нибудь полезное, не говоря уже о великом, нужно иметь в своем черепе хорошо обученную и настроенную фильтровальную систему.

Евгений Кучурин. Геофизик Уральской школы. XX в.

Содержание

1. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.

2. Спектры мощности случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала. Взаимный спектр мощности входного и выходного сигналов. Усиление шумов. Функция когерентности.

Введение

Если сигнал на входе фильтра является детерминированным, то его соотношение с выходным сигналом однозначно определяется импульсным откликом фильтра. Таким же однозначным является соотношение входа - выхода и для случайных сигналов, однако в силу природы последних аналитическое представление как входного сигнала, так и отклика системы, не представляется возможным. Для описания реакции фильтра на случайный входной сигнал используется статистический подход.

5.1. Фильтрация случайных сигналов [4, 15].

Если параметры случайного входного сигнала специально не оговариваются, то по умолчанию принимается, что на вход фильтра поступает реализация случайного стационарного процесса x(kt) с нулевым средним, которая вызывает сигнал y(kt) на выходе фильтра. Значение t, как обычно, принимаем равным 1.

Сохранение природы сигнала. Допустим, что фильтр имеет импульсный отклик h(n) = exp(-a·n), n і 0. Зададим на входе фильтра стационарный квазидетерминированный случайный сигнал, который не обладает свойством эргодичности, но имеет все свойства случайного сигнала, и может быть описан в явной математической форме:




Рис. 5.1.1. Фильтрация квазидетерминированного сигнала.
x(k) = A + cos(2k+),

где A и  - взаимно независимые случайные величины, причем значение  равномерно распределено в интервале [0, 2]. При этом выходной сигнал определится выражением:

y(k) = h(n) ③ x(k-n) єh(n) x(k-n)

y(k) = A/3 + [3 cos(2k+) + 2 sin(2k+)]/13.

Из этого выражения следует, что выходной сигнал фильтра также является случайным и содержит те же самые случайные параметры, что и входной сигнал, а, следовательно, для него существуют определенные статистические характеристики. Пример реализации квазидетерминированного случайного сигнала и его фильтрации аналогом сглаживающего RC-фильтра приведен на рис. 5.1.1.

Математическое ожидание (индекс операции – М) произвольного входного случайного стационарного сигнала x(k) на выходе фильтра определится выражением:

= М{y(k)}= M{h(n) x(k-n)}=M{x(k-n)}h(n)

= h(n)Кпс  

Отсюда следует, что математическое ожидание выходных сигналов фильтра равно математическому ожиданию входных сигналов, умноженному на коэффициент усиления фильтром постоянной составляющей. При Кпс = 1 среднее значение выходных сигналов не изменяется и равно среднему значению входных сигналов. Если фильтр не пропускает постоянную составляющую сигналов (сумма коэффициентов импульсного отклика фильтра равна нулю), то случайный выходной сигнал всегда будет иметь нулевое математическое ожидание.

Корреляционные соотношения. Для нецентрированных входных сигналов x(k) размером (0-К) автокорреляционная функция (АКФ), а равно и функция автоковариации Kx(n) (ФАК) для центрированных случайных сигналов, вычисляется по формуле:

Rx(n) = [1/(K+1-n)]x(k) x(k+n). (5.1.2)

Формула применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

Rs(n) = skЧsk+n, sk-n = 0 при k+n > K, (5.1.3)

т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (5.1.2). Разницу между нормировками по формулам (5.1.2) и (5.1.3) можно наглядно видеть на рис. 5.1.2.



Рис. 5.1.2.

Формулу (5.1.3) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:

Rs(n) = M{sk sk+n} @ . (5.1.4)

По аналогичной формуле может быть вычислена и АКФ выходных сигналов. Для произведения выходных сигналов y(k) и y(k+n), образующих функцию автокорреляции выходных сигналов, можно также записать (без дополнительных множителей):

y(k) y(k+n) = h(i)h(j) x(k-i)x(k+n-j)

Если взять математические ожидания от обеих частей этого равенства, то, с учетом соотношения в правой части под знаками сумм

M{x(k-i) x(k+n-j)} = -Rx(k-i-k-n+j) = Rx(n+i-j),

получим:

Ry(n) =h(i)h(j) Rx(n+i-j)єRx(n) ③ h(n+i) ③ h(n-j)  

Таким образом, функция автокорреляции выходного сигнала равна АКФ входного сигнала, свернутой дважды, в прямом и обратном направлении, с импульсным откликом фильтра, что сохраняет четность АКФ выходного сигнала. Для центрированных процессов аналогичное заключение действительно и для ковариационных функций. На рис. 5.1.3 приведен пример нормированных АКФ входной и выходной случайных последовательностей при фильтрации RC-фильтром, форма импульсного отклика которого также приведена на рисунке.



Рис. 5.1.3. Функции корреляционных коэффициентов.

Заметим, что для свертки импульсных откликов, производя замену nj = m, мы имеем равенство:

h(n+i) ③ h(n-j) = h(m+i+j) ③ h(m) = h(m) ③ h(m+p) = Rh(m),

где Rh(m) - функция корреляции импульсного отклика фильтра. Отсюда:

Ry(n) = Rx(n) ③ Rh(m). (5.1.5')

Это означает появление в случайном сигнале на выходе фильтра определенной корреляционной зависимости, определяемой инерционностью фильтра. Эффективный интервал k корреляции данных в сигнале тем меньше, чем выше верхняя граничная частота в его спектра (по уровню 0.5):

к = /в =1/2fв.

Оценка интервала корреляции для конечных (непериодических) функций, как правило, производится непосредственно по функциям автокорреляции R(n):

k = 2n|R(n)/R(0)| - 1, (5.1.6)

где значение n ограничивается величиной 3-5 интервалов спада центрального пика до величины порядка 0.1ЧR(0). Без такого ограничения за счет суммирования модуля флюктуаций, не несущих информации, значениеk завышается относительно расчетного по спектральной характеристике сигнала. Значение k может определяться также непосредственно по координате пересечения нулевой линии функцией автоковариации K(n). Дальше обычно начинаются статистические флюктуации значения K(n) около нулевой линии, вызванные ограниченностью выборки.




Рис. 5.1.4. Функции корреляционных

коэффициентов большой выборки.
Функция Rx(n) случайных статистически независимых отсчетов близка к функции, свертка которой с Rh(m) приведет к формированию на выходе выходного сигнала, нормированная форма АКФ которого будет стремиться к форме Rh(m). При достаточно большой выборке случайных отсчетов входного сигнала это означает практически полное повторение функцией Ry(n) формы корреляционной функции импульсного отклика, как это можно видеть на рис. 5.1.4, который отличается от рис. 5.1.3 только количеством выборки К=10000. Соответственно, интервал корреляции выходных сигналов для случайной входной последовательности можно определять непосредственно по функции (5.1.6) непосредственно импульсного отклика фильтра.

Для взаимной корреляционной функции (ВКФ) Rxy входного и выходного сигналов соответственно имеем:

x(k) ③ y(k+n) =h(i) x(k) y(k+n-i)

Rxy(n) =h(i) Rx(n-i)є h(i) ③ Rx(n-i)  5

т.е. функция взаимной корреляции входного и выходного сигналов равна свертке АКФ входного сигнала с функцией импульсного отклика фильтра. Заключение действительно и для функций ковариации.

Другая взаимно корреляционная функция Ryx может быть получена из соотношения:

Ryx(n) = Rxy(-n) є h(i) ③ Rx(n+i). (5.1.7')

Отметим, что для статистически независимых случайных величин при одностороннем импульсном отклике (h(i) = 0 при i<0) функция Rxy(n) также является односторонней, и равна 0 при n<0, а функция Ryx соответственно равна 0 при n>0.

5.2. СПЕКТРЫ МОЩНОСТИ СЛУЧАЙНЫХ СИГНАЛОВ [4, 15].

Спектр мощности выходного сигнала. Если на вход фильтра с импульсным откликом h(k) у H(f) поступает случайный стационарный эргодический сигнал x(k) у XТ(f), имеющий на интервале Т функцию автокорреляции Rx(n) и спектр мощности Wx(f), то на выходе фильтра регистрируется стационарный эргодический сигнал y(k) у YT(f) = XТ(f)H(f). Соответственно, энергетический спектр выходного сигнала на том же интервале:

|YT(f)|2 = |XT(f)|2 |H(f)|2. (5.2.1)

Оценка спектра мощности (спектральной плотности энергии):

Wy(f) » (1/T) |XТ(f)|2 |H(f)|2= Wx(f) |H(f)|2. (5.2.2)

Спектр мощности сигнала на выходе фильтра равен спектру мощности входного сигнала, умноженному на квадрат модуля частотной характеристики фильтра. С учетом четности корреляционных функций спектр мощности выходного сигнала также является четной действительной функцией и не имеет фазовой характеристики процесса.

Спектр мощности сигнала и его функция автокорреляции связаны преобразованием Фурье:

Ry(n) у |Y()|2 = Wy().

Средняя мощность выходного сигнала определяется с использованием формулы (5.2.1):

Wy = Ry(0) =Wx(f) |H(f)|2 df є Rx(0)h2(n) = Wxh2(n). (5.2.3)

Если значение мощности входного сигнала неизвестно, то вычисляется непосредственно средний квадрат значений выходного сигнала:

= Ry(0) є h2(n) єWx(f) |H(f)|2 df.

Вывод: средняя мощность выходного сигнала равна средней мощности входного сигнала, умноженной на сумму квадратов коэффициентов импульсного отклика фильтра.

Дисперсия выходного сигнала. Для центрированных случайных сигналов средняя мощность равна дисперсии сигналов. Для нецентрированных выходных сигналов:

y2 = - 2 є (-2)h2(n). (5.2.4)

Взаимный спектр мощности входного и выходного сигнала:

Wxy(f) » (1/T)XT(f)YT(f) = (1/T)|XT(f)|2 H(f) = Wx(f)H(f). (5.2.5)

Осуществляя преобразование Фурье левой и правой части выражения, получаем:

Rxy(n) = Rx(n) ③ h(n), (5.2.6)

что повторяет формулу (5.1.5).

Усиление шумов. Критерием качества при использовании любого метода фильтрации информации можно считать выполнение целевого назначения с минимальным усилением шумов (максимальным их подавлением). Обозначим через (k) аддитивный шум во входном сигнале с математическим ожиданием M{(k)}= 0 и дисперсией 2. Значения (k) статистически независимы. С учетом помехи во входном сигнале значение сигнала на выходе:

y(k) = n h(n)[x(k-n)+(k-n)].

Математическое ожидание значений выходного сигнала:

M{y(k)}= n h(n)[x(k-n)+M{(k-n)]}= n h(n) x(k-n).

Вычислим дисперсию распределения отсчетов выходного сигнала:

D{y(k)}= M{[n h(n)[x(k-n)+(k-n)]-M{y(k)}]2}=

= M{[n h(n) (k-n)]2}= n h2(n) M{2(k-n)}= 2n h2(n). (5.2.7)

Отсюда следует, что сумма квадратов значений импульсного отклика цифрового фильтра представляет собой коэффициент усиления шумов, равномерно распределенных в главном частотном диапазоне фильтра. Это полностью соответствует прямому использованию выражения (5.2.7) при Wx(f) = 2:

y2 = 2 |H(f)|2 df ? 2h2(n). (5.2.7')

Таким образом, коэффициент усиления фильтром дисперсии статистически распределенных шумов при расчете по импульсному отклику:

Kq =n h2(n). (5.2.8)

По дискретной частотной функции фильтра:

Kq = [1/(N+1)] n Hn2. (5.2.8')

Пример. Сглаживающий фильтр: y(k) = 0.2x(k-n).

Коэффициент усиления шумов: 5 (0,22) = 0,2. Дисперсия шумов уменьшается в 1/0.2 = 5 раз.

Выполните расчет коэффициента усиления шумов для пятиточечного фильтра МНК.

Контрольный ответ: 0.486.

Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:

xy2(f) = |Wxy(f)|2/[Wx(f)ЧWy(f)]. (5.2.9)

Если функции Wx(f) и Wy(f) отличны от нуля и не содержат дельта-функций, то для всех частот f значения функции когерентности заключены в интервале:

0 Ј xy2(f) Ј 1.

Для исключения дельта-функции на нулевой частоте (постоянная составляющая сигнала) определение функции когерентности производится по центрированным сигналам. Для фильтров с постоянными параметрами функция когерентности равна 1, в чем нетрудно убедиться, если в формулу (5.2.9) подставить выражения Wxy и Wy, определенные через Wx. Для совершенно не связанных сигналов функция когерентности равна нулю. Промежуточные между 0 и 1 значения могут соответствовать трем ситуациям:

1. В сигналах (или в одном из них) присутствует внешний шум (например, шум квантования при ограничении по разрядности).

2. Фильтр не является строго линейным. Это может наблюдаться, например, при определенном ограничении по разрядности вычислений, при накоплении ошибки в рекурсивных системах и т.п.

3. Выходной сигнал y(t) помимо x(t) зависит еще от каких-то входных или внутренних системных процессов.

Величина 1-xy2(f) задает долю среднего квадрата сигнала y(t) на частоте f, не связанную с сигналом x(t).

Использование функций когерентности в практических методах анализа случайных данных подробно рассмотрено в работе /4/.

литература

4. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

15. Купер Дж., Макгиллем А. Вероятностные методы анализа сигналов и систем. – М.: Мир, 1989. – 376 с. [kgl]
Тема 6. ВЕСОВЫЕ ФУНКЦИИ.

Свобода и ограничение есть два аспекта необходимости.

Антуан де Сент-Экзюпери. Писатель и летчик Франции, ХХ в.

Берешь топор, обрубаешь себе палец, и начинаешь вибрировать. Берешь сигнал, обрубаешь ему хвост, он тоже начинает вибрировать. А весовая функция, это обезболивающий укол. Вибрацию снимает, но палец не восстанавливает.

Валерий Самойлин. Геофизик и альпинист России, ХХ в.
Содержание

Введение.

1. Явление Гиббса. Сущность явления Гиббса. Параметры эффекта Гиббса. Последствия для практики.

2. Весовые функции. Нейтрализация явления Гиббса. Основные весовые функции. Характеристики и спектры весовых функций.

Введение

Большинство методов анализа и обработки данных имеют в своем составе операцию свертки множества данных s(k) с функцией оператора свертки h(n). Как множество данных s(k), так и оператор h(n), выполняющий определенную задачу обработки данных и реализующий определенную частотную передаточную функцию системы (фильтра), могут быть бесконечно большими. Практика цифровой обработки имеет дело только с ограниченными множествами и данных, и коэффициентов оператора. В общем случае, эти ограниченные множества "вырезаются" из бесконечных множеств s(k) и h(n), что равносильно умножению этих множеств на прямоугольную функцию с единичным амплитудным значением, которую называют естественным временным окном или естественной весовой функцией. Учитывая, что произведение функций отображается в спектральной области сверткой их фурье-образов, это может весьма существенно сказаться как на спектральных характеристиках функций, так и на результатах их последующих преобразований и обработки. Основное назначение рассматриваемых в данной теме весовых функций – сведение к минимуму нежелательных эффектов усечения функций.

3.1. Явление Гиббса /24/.

Чаще всего с изменением частотных характеристик функций приходится сталкиваться при усечении операторов фильтров. На примере усечения операторов и рассмотрим характер происходящих изменений.

При расчетах фильтров, как правило, задается определенная передаточная характеристика H() фильтра, и по ней производится расчет оператора фильтра h(n), количество членов которого может оказаться очень большим, в пределе - бесконечным. Усечение может рассматриваться, как результат умножения функции оператора фильтра на селектирующее весовое окно длиной 2N+1. В простейшем случае это окно представляет собой П-образную селектирующую функцию:

hn = h(n) ПN(n), ПN(n) = 1 при |n| Ј N, ПN(n) = 0 при |n| > N.

Функция h(n) оператора фильтра обуславливает определенную частотную передаточную характеристику фильтра H(). Полному оператору h(n) соответствует исходная частотная характеристика H():

H() =h(n) exp(-jn). (3.1.1)

Сущность явления Гиббса. Усеченной функции hn во временном окне селекции ПN(n) в частотном пространстве соответствует спектральная функция, которая в определенной степени должна отличаться от функции H(Очевидно, что при усечении ряда Фурье (3.1.1), до конечного числа членов ±N мы будем иметь усеченный ряд Фурье:

HN() =h(n) exp(-jn), (3.1.2)

при этом сходимость суммы остающихся членов ряда HN() к исходной передаточной функции H() ухудшается, и происходит отклонение частотной характеристики фильтра от первоначально заданной в тем большей степени, чем меньше значение N. Особенно ярко это проявляется на крутых перепадах (разрывах, скачках) в передаточных функциях:

- крутизна перепадов "размывается", т.к. она не может быть больше, чем крутизна (в нулевой точке) последней сохраненной гармоники ряда (3.1.2);

- по обе стороны "размытых" перепадов появляются выбросы и затухающие осцилляции с частотой, близкой к частоте первого отброшенного члена ряда (3.1.1).

Эти эффекты (см. рис. 3.1.2) при усечении рядов Фурье получили название явления Гиббса.

Рассмотрим явление Гиббса более подробно на примере разложения в ряд Фурье частотной функции единичного скачка G(), которая является Фурье-образом какой-то дискретной временной функции bn. Уравнение функции единичного скачка:

G() = - 0.5, -Ј0, G() = 0.5, 0 Ј Ј, (3.1.3)

Функция (3.1.3) имеет разрыв величиной 1 в точке = 0, и в точках , 2, … , в силу дискретности временной функции и периодичности ее спектра. Поскольку функция G() является нечетной, ее ряд Фурье не содержит косинусных членов, и коэффициенты ряда определяются выражением:

bn = G() sin n d = sin n d.

bn = 2/(n·), n- нечетное,

bn = 0, n- четное.



Рис. 3.1.1. Значения коэффициентов bn.

Как видно на рис. 3.1.1, ряд коэффициентов bn затухает очень медленно. Соответственно, медленно будет затухать и ряд Фурье функции G():

G() = (2/)[sin  + (1/3)·sin 3 + (1/5)·sin 5 +....].

G() = sin[(2n+1)]/(2n+1). (3.1.4)




Рис. 3.1.2. Явление Гиббса.
Если мы будем ограничивать количество коэффициентов bn, т.е. ограничивать значение N ряда Фурье функции G(), то суммирование в (3.1.4) будет осуществляться не до ?, а до значения N. Графики частичных сумм ряда (3.1.4) в сопоставлении с исходной функцией приведены на рис. 3.1.2. Они наглядно показывают сущность явления Гиббса.

При усечении рядов Фурье определенное искажение функции, разложенной в ряд Фурье, существует всегда. Но при малой доле энергии отсекаемой части сигнала этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее выразительно.

1   2   3   4   5   6   7   8   9   ...   16


4.2. Интегрирование данных /24/
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации