Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n122.doc

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n122.doc

  1   2   3   4   5   6   7   8   9   ...   16
Тема 1. ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ

В серьезных делах следует заботиться не столько о том, чтобы создавать благоприятные возможности, сколько о том, чтобы их не упускать.

Франсуа де Ларошфуко. Французский писатель моралист. XVII в.

Для цифровой обработки сигналов нужно сначала определить, для тебя - это дело или возможность. Если дело – вперед и с песней, будешь ученым. Если возможность – хватай и не упускай, будешь инженером, а дело найдется.

Виль Ибрагимов. Ташкентский геофизик Уральской школы, ХХ в.

Содержание

Введение.

1. Предисловие к цифровой обработке сигналов. Цифровые сигналы. Преобразование сигнала в цифровую форму. Обработка цифровых сигналов. Z-преобразование. Природа сигналов. Функциональные преобразования сигналов.

2. Ключевые операции цифровой обработки. Линейная свертка. Корреляция. Линейная цифровая фильтрация. Дискретные преобразования. Модуляция сигналов.

3. Области применения цифровой обработки сигналов. Процессоры ЦОС. Запись, воспроизведение, использование звука. Применение ЦОС в телекоммуникациях.

Введение

Физические величины макромира, как основного объекта наших измерений и источника информационных сигналов, как правило, имеют непрерывную природу и отображаются непрерывными (аналоговыми) сигналами. Цифровая обработка сигналов (ЦОС или DSP - digital signal processing) работает исключительно с дискретными величинами, причем с квантованием как по координатам динамики своих изменений (по времени, в пространстве, и любым другим изменяемым параметрам), так и по амплитудным значениям физических величин. Математика дискретных преобразований зародилась в недрах аналоговой математики еще в 18 веке в рамках теории рядов и их применения для интерполяции и аппроксимации функций, однако ускоренное развитие она получила в 20 веке после появления первых вычислительных машин. В принципе, в своих основных положениях математический аппарат дискретных преобразований подобен преобразованиям аналоговых сигналов и систем. Однако дискретность данных требует учета этого фактора, а его игнорирование может приводить к существенным ошибкам. Кроме того, ряд методов дискретной математики не имеет аналогов в аналитической математике.

Стимулом быстрого развития дискретной математики является и то, что стоимость цифровой обработки данных ниже аналоговой и продолжает падать, даже при очень сложных ее видах, а производительность вычислительных операций непрерывно возрастает. Немаловажным является также и то, что системы ЦОС отличаются высокой гибкостью. Их можно дополнять новыми программами и перепрограммировать на выполнение различных функций без изменения оборудования. В последние годы ЦОС оказывает постоянно возрастающее влияние на ключевые отрасли современной промышленности: телекоммуникации, средства информации, цифровое телевидение и пр. Следует ожидать, что в обозримом будущем интерес и к научным, и к прикладным вопросам цифровой обработке сигналов будет нарастать во всех отраслях науки и техники.

1.1. ПРЕДИСЛОВИЕ К ЦИФРОВОЙ ОБРАБОТКЕ СИГНАЛОВ [1i].

Цифровые сигналы формируются из аналоговых операцией дискретизации – последовательными отсчетами (измерением) амплитудных значений сигнала через интервалы времени t. В принципе известны методы ЦОС для неравномерной дискретизации данных, однако области их применения достаточно специфичны и ограничены. Условия, при которых возможно полное восстановление аналогового сигнала по его цифровому эквиваленту с сохранение всей исходно содержавшейся в сигнале информации, выражаются теоремами Найквиста, Уиттекера, Котельникова, Шеннона, сущность которых практически одинакова. Для дискретизации аналогового сигнала с полным сохранением информации в его цифровом эквиваленте максимальные частоты в аналоговом сигнале должны быть не менее чем вдвое меньше, чем частота дискретизации, то есть fmax Ј (1/2)fd. Если это условие нарушается, в цифровом сигнале возникает эффект маскирования (подмены) действительных частот "кажущимися" более низкими частотами. Наглядным примером этого эффекта может служить иллюзия, довольно частая в кино – вращающееся колесо автомобиля вдруг начинает вращаться в противоположную сторону, если между последовательными кадрами (аналог частоты дискретизации) колесо совершает более чем пол-оборота. При этом в цифровом сигнале вместо фактической регистрируется "кажущаяся" частота, а, следовательно, восстановление фактической частоты при восстановлении аналогового сигнала становится невозможным.

Преобразование сигнала в цифровую форму производится аналого-цифровыми преобразователями (АЦП). Как правило, они используют двоичную систему представления при равномерной шкале с определенным числом разрядов. Увеличение числа разрядов повышает точность измерений и расширяет динамический диапазон измеряемых сигналов. Потерянная из-за недостатка разрядов АЦП информация невосстановима, и существуют лишь оценки погрешности, например, через мощность шума, порожденного ошибкой в последнем разряде. Для того чтобы оценить влияние помехи, вводится понятие “отношение сигнал-шум” - отношение мощности сигнала к мощности шума (в децибелах).

Наиболее часто используются 8-, 10-, 12-, 16-, 20- и 24-х разрядные АЦП. Каждый дополнительный разряд улучшает отношение сигнал-шум на 6 децибел. Однако увеличение количества разрядов снижает скорость дискретизации и увеличивает стоимость аппаратуры. Важным аспектом является также динамический диапазон, определяемый максимальным и минимальным значением сигнала. Для обратного преобразования используется цифро-аналоговый преобразователь (ЦАП), основные характеристики которого (разрядность, частота дискретизации, число каналов и т.п.) аналогичны характеристикам АЦП.

Для компенсации ошибки, порожденной неточной дискретизацией, существуют определенные методы. Например, усредняя по нескольким реализациям, можно добиться выделения даже сигнала, меньшего в несколько десятков раз по амплитуде по сравнению с ошибкой дискретизации. Иногда используется и искусственное привнесение помехи (при обработке звука – слабый гауссовский шум для маскирования шума квантования и воспринимающийся на слух приятнее “точного” сигнала).

Обработка цифровых сигналов выполняется либо специальными процессорами, либо на универсальных ЭВМ и компьютерах по специальным программам. Наиболее просты для рассмотрения линейные системы. Линейными называются системы, для которых имеет место суперпозиция (отклик на сумму двух входных сигналов равен сумме откликов на эти сигналы по отдельности) и однородность, или гомогенность (отклик на входной сигнал, усиленный в определенное число раз, будет усилен в то же число раз). Линейность позволяет рассматривать объекты исследования по частям, а однородность - в удобном масштабе. Для реальных объектов свойства линейности могут выполняться приближенно и в определенном интервале входных сигналов.

Если входной сигнал x(t-t0) порождает одинаковый выходной сигнал y(t-t0) при любом сдвиге t0, то систему называют инвариантной во времени. Ее свойства можно исследовать в любые произвольные моменты времени. Для описания линейной системы вводится специальный входной сигнал - единичный импульс (импульсная функция). В силу свойства суперпозиции и однородности любой входной сигнал можно представить в виде суммы таких импульсов, подаваемых в разные моменты времени и умноженных на соответствующие коэффициенты. Выходной сигнал системы в этом случае представляет собой сумму откликов на эти импульсы, умноженных на указанные коэффициенты. Отклик на единичный импульс называют импульсной характеристикой системы h(n), а отклик на произвольный входной сигнал s(k) можно выразить сверткой g(k) = h(n)*s(k-n).

Если h(n)=0 при n<0, то систему называют каузальной (причинной). В такой системе реакция на входной сигнал появляется только после поступления сигнала на ее вход. Некаузальные системы реализовать физически невозможно. Если требуются физически реализовать свертку сигналов с двусторонними операторами (при дифференцировании, преобразовании Гильберта, и т.п.), то это выполняется с задержкой (сдвигом) входного сигнала минимум на длину левосторонней части оператора свертки.

Z-преобразование. Для анализа дискретных сигналов и систем широко используется z-преобразование, которое является обобщением дискретного преобразования Фурье. Этим преобразованием произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kt), ставится в соответствие степенной полином по z (или степенной полином по z-1 = 1/z), последовательными коэффициентами которого являются отсчеты функции: sk = s(kt) « TZ[s(kt)] =sk zk = S(z), где z = +jv = rЧexp(-j) - произвольная комплексная переменная. Это преобразование позволяет использовать всю мощь дифференциального и интегрального исчисления, алгебры и прочих глубоко развитых разделов аналитической математики.

Системы обычно описывается линейными разностными уравнениями с постоянными коэффициентами: y(k) = ? b(n) x(k-n) - ? a(m) y(k-m), n=0, 1, … , N, m=1, 2, … , M. Этим уравнением устанавливается, что выходной сигнал y(k) системы в определенный момент ki (например, в момент времени kit) зависит от значений входного сигнала x(k) в данный (ki) и предыдущие моменты (ki-n) и значений сигнала y(k) в предыдущие моменты (ki-m).

Z-преобразование этого уравнения, выраженное относительно передаточной функции системы H(z) = Y(z)/X(z), представляет собой рациональную функцию от z в виде отношения двух полиномов от z. Корни полинома в числителе называются нулями, а в знаменателе - полюсами функции H(z). Значения нулей и полюсов позволяют определить некоторые свойства линейной системы. Так, если все полюсы лежат вне единичной окружности |z|=1 на комплексной z-плоскости (по модулю больше единицы), то система является устойчивой (не пойдет “вразнос” ни при каких входных воздействиях). Нули функции Y(z) обращают в ноль H(z) и показывают, какие колебания вовсе не будут восприниматься системой (“антирезонанс”). Полюса функции X(z) обращают H(z) в бесконечность, такой сигнал на входе системы вызывает резонанс и неограниченное возрастание сигнала на выходе. Систему называют минимально-фазовой, если все полюсы и нули передаточной функции лежат вне единичной окружности. Попутно заметим, что применение z-преобразования с отрицательными степенями z-1 меняет положение полюсов и нулей относительно единичной окружности |z|=1 (область вне окружности перемещается внутрь окружности, и наоборот).

Природа сигналов. По своей природе сигналы могут быть случайные или детерминированные. К детерминированным относят сигналы, значения которых в любой момент времени или в произвольной точке пространства (а равно и в зависимости от любых других аргументов) являются априорно известными или могут быть достаточно точно определены (вычислены) по известной или предполагаемой функции, даже если мы не знаем ее явного вида. Случайные сигналы в принципе не имеют определенного закона изменения своих значений во времени или в пространстве. Для каждого конкретного момента (отсчета) случайного сигнала можно знать только вероятность того, что он примет какое-либо значение в какой-либо определенной области возможных значений. Закон распределения (функция распределения – вероятность того, что случайная величина примет значение меньшее аргумента функции, или плотность распределения – производная функции распределения) далеко не всегда известен.

Одним из самых распространенных является нормальный закон (Гаусса), плотность распределения которого имеет вид симметричного колокола. Для его описания достаточно двух первых моментов. Его распространенность обусловлена тем, что сумма случайных величин по мере увеличения их количества стремиться к нормальному закону. Определенное распространение имеют и равномерный на заданном отрезке закон, и двойной экспоненциальный, похожий по форме на нормальный, но с более длинными “хвостами” (вероятность больших отклонений больше, чем для нормального), и другие, в том числе несимметричные законы.

Наиболее простые характеристики законов распределения – среднее значение случайных величин (математическое ожидание) и дисперсия (математическое ожидание квадрата отклонения от среднего), характеризующая разброс значений случайных величин относительно среднего значения. Параметры динамики случайных сигналов (процессов) во времени характеризуются функциями автокорреляции (количественная оценка взаимосвязи значений случайного сигнала на различных интервалах) или автоковариации (то же, при центрировании случайных сигналов). Аналогичной мерой взаимосвязи двух случайных процессов и степени их сходства по динамике развития является кросскорреляция или кроссковариация (взаимная корреляция или ковариация). Максимальное значение взаимной корреляции достигается при совпадении двух сигналов. При задержке одного из сигналов по отношению к другому положение максимума корреляционной функции дает возможность оценить величину этой задержки.

Функциональные преобразования сигналов. Одним из основных методов частотного анализа и обработки сигналов является преобразование Фурье. Различают понятия “преобразование Фурье” и “ряд Фурье”. Преобразование Фурье предполагает непрерывное распределение частот, ряд Фурье задается на дискретном наборе частот. Сигналы также могут быть заданы в наборе временных отсчетов или как непрерывная функция времени. Это дает четыре варианта преобразований – преобразование Фурье с непрерывным или с дискретным временем, и ряд Фурье с непрерывным временем или с дискретным временем. Наиболее практична с точки зрения цифровой обработки сигналов дискретизация и во временной, и в частотной области, но не следует забывать, что она является аппроксимацией непрерывного преобразования. Непрерывное преобразование Фурье позволяет точно представлять любые явления. Сигнал, представленный рядом Фурье, может быть только периодичен. Сигналы произвольной формы могут быть представлены рядом Фурье только приближенно, т.к. при этом предполагается периодическое повторение рассматриваемого интервала сигнала за пределами его задания. На стыках периодов при этом могут возникать разрывы и изломы сигнала, и возникать ошибки обработки, вызванные явлением Гиббса, для минимизации которых применяют определенные методы (весовые окна, продление интервалов задания сигналов, и т.п.).

При дискретизации и во временной, и в частотной области, вместо “дискретно-временной ряд Фурье” обычно (что не слишком точно) говорят о дискретном преобразовании Фурье (ДПФ): S(n) = s(k) exp(-j 2 kn/N), где N- количество отсчетов сигнала. Применяется оно для вычисления спектров мощности, оценивания передаточных функций и импульсных откликов, быстрого вычисления сверток при фильтрации, расчете корреляции, расчете преобразований Гильберта, и т.п. Расчет ДПФ по приведенной формуле требует вычисления n коэффициентов, каждый из которых зависит от k элементов исходного отрезка, так что число операций не может быть меньше nk. Существует целое семейство алгоритмов, известное, как “Быстрое Преобразование Фурье” - БПФ, сокращающее время работы до n log(k) операций. “Быстрое” не следует трактовать, как “упрощенное” и “неточное”. При точной арифметике результаты расчетов ДПФ и по алгоритмам БПФ совпадают.

Известное применение находят и варианты преобразования Фурье: косинусное для четных и синусное для нечетных сигналов, а также преобразование Хартли, где базисными функциями являются суммы синусов и косинусов, что позволяет повысить производительность вычислений и избавиться от комплексной арифметики. Вместо косинусных и синусных функций используются также меандровые функции Уолша, принимающие значения только +1 и -1. И, наконец, в последнее время в задачах спектрально-временнного анализа нестационарных сигналов, изучения нестационарностей и локальных особенностей сигналов "под микроскопом", очистки от шумов и сжатия сигналов начинают получать в качестве базисов разложения вейвлеты ("короткие волны"), локализованные как во временной, так и в частотной области.

1.2. КЛЮЧЕВЫЕ ОПЕРАЦИИ ЦИФРОВОЙ ОБРАБОТКИ [12, 43, 2i].

Существуют многочисленные алгоритмы ЦОС как общего типа для сигналов в их классической временной форме (телекоммуникации, связь, телевидение и пр.), так и специализированные в самых различных отраслях науки и техники (геоинформатике, геологии и геофизике, медицине, биологии, военном деле, и пр.). Однако все эти алгоритмы, как правило – блочного типа, построены на сколь угодно сложных комбинациях достаточно небольшого набора типовых цифровых операций, к основным из которых относятся свертка (деконволюция), корреляция, фильтрация, функциональные преобразования, модуляция. Частично эти операции уже рассматривались нами в "Теории сигналов и систем". Ниже приводятся только ключевые позиции по этим операциям ("повторенье – мать ученья").

Линейная свертка – основная операция ЦОС, особенно в режиме реального времени. Для двух конечных причинных последовательностей h(n) и y(k) длиной соответственно N и K свертка определяется выражением:

s(k) = h(n) ③ y(k) є h(n) * y(k) =h(n) y(k-n), (1.2.1)

где: ③ или * - символьные обозначения операции свертки. Как правило, в системах обработки одна из последовательностей y(k) представляет собой обрабатываемые данные (сигнал на входе системы), вторая h(n) – оператор (импульсный отклик) системы, а функция s(k) – выходной сигнал системы. В компьютерных системах с памятью для входных данных оператор h(n) может быть двусторонним от –N1 до +N2, например – симметричным h(-n) = h(n), с соответствующим изменением пределов суммирования в (1.2.1), что позволяет получать выходные данные без сдвига фазы частотных гармоник относительно входных данных. При строго корректной свертке с обработкой всех отсчетов входных данных размер выходного массива равен K+N1+N2-1 и должны задаваться начальные условия по отсчетам y(k) для значений y(0-n) до n=N2 и конечные для y(K+n) до n=N1. Пример выполнения свертки приведен на рис. 1.2.1.

Рис. 1.2.1. Примеры дискретной свертки.

Преобразование свертки однозначно определяет выходной сигнал для установленного значения входного сигнала при известном импульсном отклике системы. Обратная задача деконволюции - определение функции y(k) по функциям s(k) и h(n), имеет решение только при определенных условиях. Это объясняется тем, что свертка может существенно изменить частотный спектр сигнала s(k) и восстановление функции y(k) становится невозможным, если определенные частоты ее спектра в сигнале s(k) полностью утрачены.

Корреляция существует в двух формах: автокорреляции и взаимной корреляции.

Взаимно-корреляционная функция (ВКФ, cross-correlation function - CCF), и ее частный случай для центрированных сигналов функция взаимной ковариации (ФВК)– это показатель степени сходства формы и свойств двух сигналов. Для двух последовательностей x(k) и y(k) длиной К с нулевыми средними значениями оценка взаимной ковариации выполняется по формулам:

Kxy(n) = (1/(K-n+1)) x(k) y(k+n), n = 0, 1, 2, … (1.2.2)

Kxy(n) = (1/(K-n+1))x(k-n) y(k), n = 0, -1, -2, … (1.2.2')

Рис. 1.2.2. Функция взаимной ковариации двух детерминированных сигналов.

Пример определения сдвига между двумя детерминированными сигналами, представленными радиоимпульсами, по максимуму ФВК приведен на рис. 1.2.1. В принципе, по максимуму ФВК может определяться и сдвиг между локальными сигналами, достаточно различными по форме.

Рис. 1.2.3. ФВК двух сигналов, один из которых сильно зашумлен.

На рис. 1.2.3 приведен аналогичный пример ФВК двух одинаковых по форме сигналов, на один из которых наложен шумовой сигнал, мощность которого превышает мощность сигнала. Вычисление ФВК в этом случае обычно выполняется по варианту 2 – с постоянным нормировочным множителем. Это определяется тем, что по мере возрастания сдвига n и уменьшения количества суммируемых членов в формуле (1.2.2) за счет шумовых сигналов существенно нарастает ошибка оценки ФВК, которая к тому же увеличивается за счет нелинейного увеличения значения нормировочного множителя, особенно при малом количестве отсчетов. Сохранение множителя постоянным в какой-то мере компенсирует этот эффект.

Рис. 1.2.4. ФВК двух зашумленных радиоимпульсов.

На рис. 1.2.4 приведен пример вычисления функции взаимной ковариации двух одинаковых сигналов, скрытых в шумах. ФВК позволяет не только определить величину сдвига между сигналами, но и достаточно уверенно оценить период колебаний в исследуемых радиоимпульсах.

Относительный количественный показатель степени сходства двух сигналов x(k) и y(k) - функция взаимных корреляционных коэффициентовxy(n). Она вычисляется через центрированные значения сигналов (для вычисления взаимной ковариации нецентрированных сигналов достаточно центрировать только один из них), и нормируется на произведение значений стандартов (средних квадратических вариаций) функций x(k) и y(k):

xy(n) = Kxy(n)/xy). (1.2.3)

x2 = Kxx(0) = (1/(K+1))(x(k))2, y2 = Kyy(0) = (1/(K+1))(y(k))2. (1.2.4)

Интервал изменения значений корреляционных коэффициентов при сдвигах n может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах n, на которых наблюдаются нулевые значения rxy(n), сигналы некоррелированны. Коэффициент взаимной корреляции позволяет устанавливать наличие определенной связи между сигналами вне зависимости от физических свойств сигналов и их величины.

Заметим, что в технической литературе в терминах "корреляция" и "ковариация" в настоящее время существует изрядная путаница. Чаще всего корреляционными функциями называют как функции по нецентрированным, так и по центрированным сигналам, а также и функцию взаимных корреляционных коэффициентов.

Автокорреляционная функция (АКФ, correlation function, CF) является количественной интегральной характеристикой формы сигнала, дает информацию о структуре сигнала и его динамике во времени. Она, по существу, является частным случаем ВКФ для одного сигнала и представляет собой скалярное произведение сигнала и его копии в функциональной зависимости от переменной величины значения сдвига:

Bx(n) = (1/(K-n+1))x(k) x(k+n), n = 0, 1, 2, … (1.2.5)

АКФ имеет максимальное значение при n=0 (умножение сигнала на самого себя), является четной функцией Bxy(-n)=Bxy(n), и значения АКФ для отрицательных координат обычно не вычисляются. АКФ центрированного сигнала Kx(n) представляет собой функцию автоковариации (ФАК). ФАК, нормированная на свое значение Kx(0)=x2 в n=0:

x(n) = Kx (n)/Kx(0) (1.2.6)

называется функцией автокорреляционных коэффициентов.



Рис. 1.2.5. Автокорреляционные функции.

В качестве примера на рис. 1.2.5 приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной амплитуды прямоугольного импульса, при этом энергии сигналов будут одинаковыми, что подтверждается равными значениями максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения).

Линейная цифровая фильтрация является одной из операций ЦОС, имеющих первостепенное значение, и определяется как

s(k) =h(n) y(k-n), (1.2.7)




Рис. 1.2.6. Трансверсальный цифровой фильтр.
где: h(n), n=0, 1, 2, … , N – коэффициенты фильтра, y(k) и s(k) – вход и выход фильтра. Это по сути свертка сигнала с импульсной характеристикой фильтра.

На рис. 1.2.6 показана блок-схема фильтра, который в таком виде широко известен, как трансверсальный (z – задержка на один интервал дискретизации).

К основным операциям фильтрации информации относят операции сглаживания, прогнозирования, дифференцирования, интегрирования и разделения сигналов, а также выделение информационных (полезных) сигналов и подавление шумов (помех). Основными методами цифровой фильтрации данных являются частотная селекция сигналов и оптимальная (адаптивная) фильтрация.

Дискретные преобразования позволяют описывать сигналы с дискретным временем в частотных координатах или переходить от описания во временной области к описанию в частотной. Переход от временных (пространственных) координат к частотным необходим во многих приложениях обработки данных.

Самым распространенным преобразованием является дискретное преобразование Фурье. При K отсчетов функции:

S(n) =s(k) exp(-j 2 kn/K). (1.2.8)

Напомним, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте - к периодизации функции. Для дискретных преобразований s(kt) Ы S(nf), и функция, и ее спектр дискретны и периодичны, а числовые массивы их представления соответствуют заданию на главных периодах Т = Kt (от 0 до Т или от -Т/2 до Т/2), и 2fN = Nf (от -fN до fN), где K, N – количество отсчетов сигнала и его спектра соответственно, при этом:

f = 1/T = 1/(Kt), t = 1/2fN = 1/(Nf), tf = 1/N, N = 2TfN = K. (1.2.9)

Соотношения (1.2.9) являются условиями информационной равноценности динамической и частотной форм представления дискретных сигналов. Другими словами: для преобразований без потерь информации число отсчетов функции и ее спектра должны быть одинаковыми.

В принципе, согласно общей теории информации, последнее заключение действительно и для любых других видов линейных дискретных преобразований.

Модуляция сигналов. Системы регистрации, обработки, интерпретации, хранения и использования информационных данных становятся все более распределенными, что требует коммуникации данных по высокочастотным каналам связи. Как правило, информационные сигналы являются низкочастотными и ограниченными по ширине спектра, в отличие от широкополосных высокочастотных каналов связи, рассчитанных на передачу сигналов от множества источников одновременно с частотным разделением каналов. Перенос спектра сигналов из низкочастотной области в выделенную для их передачи область высоких частот выполняется операцией модуляции. При модуляции значения информационного (модулирующего) сигнала переносятся на определенный параметр высокочастотного (несущего) сигнала.

Самые распространенные схемы модуляции для передачи цифровой информации по широкополосным каналам – это амплитудная (amplitude shift keying – ASK), фазовая (phase shift keying – PSK) и частотная (frequensy shift keying – FSK) манипуляции. При передаче данных по цифровым сетям используется также импульсно-кодовая модуляция (pulse code modulation – PCM).

1.3. ОБЛАСТИ ПРИМЕНЕНИЯ ЦИФРОВОЙ ОБРАБОТКИ [43].

Нет смысла перечислять и давать оценку возможностей ЦОС в различных областях науки и техники. С весьма малой вероятностью можно попытаться найти отрасль, где ЦОС еще не получили широкого распространения. Поэтому коснемся только тех областей, где применение ЦОС идет наиболее быстрыми темпами.

Процессоры ЦОС. Обработка данных в реальном времени обычно выполняется на специальных процессорах (чипах) ЦОС. Они, как правило, имеют:

Запись, воспроизведение, использование звука.

Цифровое микширование – регулирование и смешивание многоканальных аудиосигналов от различных источников. Это выполняется аудиоэквалайзерами (наборами цифровых полосовых фильтров с регулируемыми характеристиками), смесителями и устройствами создания специальных эффектов (реверберация, динамическое выравнивание и пр.).

Синтезаторы речи представляют собой достаточно сложные устройства генерации голосовых звуков. Микросхемы синтезаторов вместе с процессорами обычно содержат в ПЗУ словари слов и фраз в форме кадров (25 мс речи) с внешним управлением интонацией, акцентом и диалектом, что позволяет на высоком уровне имитировать человеческую речь.

Распознавание речи активно изучается и развивается, особенно для целей речевого ввода информации в компьютеры. Как правило, в режиме обучения выполняется их настройка на речь пользователя, в процессе которой система оцифровывает и создает в памяти эталоны слов. В режиме распознавания речь также оцифровывается и сравнивается с эталонами в памяти. Системы распознавания речи внедряются и в товары бытового назначения (набор телефонных номеров, включение/выключение телевизора, и пр.).

Аудиосистемы воспроизведения компакт-дисков при плотности записи выше 106 бит на мм2 обеспечивают очень высокую плотность хранения информации. Аналоговый звуковой сигнал в стереоканалах дискретизируется с частотой 44.1 кГц и оцифровывается 16-битным кодом. При записи на диск сигналы модулируются (EFM – преобразование 8-ми разрядного кода в 14-ти разрядный для надежности), при считывании сигналы демодулируется, исправляются и маскируются ошибки (по возможности) и выполняется цифро-аналоговое преобразование.

Применение ЦОС в телекоммуникациях.

Цифровая сотовая телефонная сеть – двусторонняя телефонная система с мобильными телефонами через радиоканалы и связью через базовые радиостанции. Мировым стандартом цифровой мобильной связи является система GSM. Частотный диапазон связи 890-960 МГц, частотный интервал канала 200 кГц, скорость передачи информации 270 кбит/с. В мобильной связи ЦОС используется для кодирования речи, выравнивания сигналов после многолучевого распространения, измерения силы и качества сигналов, кодирования с исправлением ошибок, модуляции и демодуляции.

Цифровое телевидение дает потребителям интерактивность, большой выбор, лучшее качество изображения и звука, доступ в Интернет. ЦОС в цифровом телевидении играет ключевую роль в обработке сигналов, кодировании, модуляции/демодуляции видео- и аудиосигналов от точки захвата до момента появления на экране. ЦОС лежит в основе алгоритмов кодирования MPEG, которые используются для сжатия сигналов перед их передачей и при декодировании в приемниках.

ЦОС в биомедицине. Основное назначение – усиление сигналов, которые обычно не отличаются хорошим качеством, и/или извлечение из них информации, представляющей определенный интерес, на фоне существенного уровня шумов и многочисленных артефактов (ложных изображений как от внешних, так и от внутренних источников). Так, например, при снятии электрокардиограммы плода регистрируется электрическая активность сердца ребенка на поверхности тела матери, где также существует определенная электрическая активность, особенно во время родов. Применение ЦОС во многих областях медицины позволяет переходить от чисто качественных показателей к объективным количественным оценкам, как например, в анестезии к оценке глубины анестетического состояния пациента при операции по электрической активности мозга.

литература

12. Канасевич Э.Р. Анализ временных последовательностей в геофизике. - М.: Недра, 1985.- 300 с.

43. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с. [kgl]


Тема 2.ЦИФРОВЫЕ ФИЛЬТРЫ ОБРАБОТКИ ОДНОМЕРНЫХ СИГНАЛОВ.

Первый натиск и первые крики решают дело.

Тит Ливий. Римский историк, 59 г.д.н.э.-17 г.н.э.

Роль крика в драке - существенный вклад в теорию конфликтов. Но имеет ли он такое же значение при фильтрации данных - не очевидно, Лично я предпочитаю воплем завершать этот процесс, а не начинать.

Эдуард Павелко. Новосибирский геофизик Уральской школы, ХХ в.
Содержание

Введение.

1. Цифровые фильтры. Общие понятия. Основные достоинства цифровых фильтров. Нерекурсивные фильтры. Рекурсивные фильтры.

2. Импульсная реакция фильтров. Функция отклика. Определение импульсной реакции.

3. Передаточные функции фильтров. Z-преобразование. Устойчивость фильтров.

4. Частотные характеристики фильтров. Общие понятия. Основные свойства. Фазовая и групповая задержка. Корреляция входа и выхода фильтров. Области применения нерекурсивных и рекурсивных фильтров.

5. Структурные схемы цифровых фильтров. Структурные схемы. Графы фильтров. Соединения фильтров. Схемы реализации фильтров. Обращенные формы.

Введение

Задачей любого исследования является установление неизвестных свойств среды или отдельных конкретных объектов по данным наблюдения процессов, в них происходящих. Изучаемые объекты могут оказаться труднодоступными или вовсе недоступными для непосредственного изучения методами прямого контакта. Например, о строении земных недр на глубинах более 10-15 км мы можем судить исключительно по данным прошедших сквозь них сейсмических волн и по характеристикам гравитационного и магнитного полей Земли. По этой причине разработка методов математической обработки и интерпретации результатов наблюдений, установления взаимосвязи между физическими свойствами природных сред и происходящих в них процессов, имеет большое значение.

Предмет цифровой фильтрации данных (сигналов) является естественным введением в широкую и фундаментальную область цифровой обработки информации. Под фильтрацией будем понимать любое преобразование информации (сигналов, результатов наблюдений), при котором во входной последовательности обрабатываемых данных целенаправленно изменяются определенные соотношения (динамические или частотные) между различными компонентами этих данных.

Как известно, преобразование динамики сигналов (и данных, которые несут эти сигналы) осуществляется в системах. Системы, избирательно меняющие форму сигналов (амплитудно-частотную или фазово-частотную характеристику), устранение или уменьшение помех, извлечение из сигналов определенной информации, разделение сигналов на определенные составляющие, и т.п. называют фильтрами. Соответственно, фильтры с любым целевым назначением являются частным случаем систем преобразования сигналов, в рамках теории которых они и будут рассматриваться.

К основным операциям фильтрации информации относят операции сглаживания, прогнозирования, дифференцирования, интегрирования и разделения сигналов, а также выделение информационных (полезных) сигналов и подавление шумов (помех). Основными методами цифровой фильтрации данных являются частотная селекция сигналов и оптимальная (адаптивная) фильтрация.

В настоящем курсе рассматриваются, в основном, методы линейной обработки данных (носителей этих данных - сигналов) линейными дискретными системами. Линейными называют системы, которые осуществляют преобразование линейных комбинаций входных сигналов в суперпозицию выходных сигналов. Принцип реализации линейных систем, физический - в виде специальных микропроцессорных устройств, или алгоритмический - в виде программ на ЭВМ, существенного значения не имеет и определяет только их потенциальные возможности.

В общем случае термином Цифровой фильтр называют аппаратную или программную реализацию математического алгоритма, входом которого является цифровой сигнал, а выходом – другой цифровой сигнал с определенным образом модифицированной формой и/или амплитудной и фазовой характеристикой. Классификация цифровых фильтров обычно базируется на функциональных признаках алгоритмов цифровой фильтрации, согласно которому ЦФ подразделяются на 4 группы: фильтры частотной селекции, оптимальные (квазиоптимальные), адаптивные и эвристические. Наиболее изученными и опробованными на практике являются ЦФ частотной селекции.

2.1. Цифровые фильтры [2, 24, 43].

Общие понятия. В одномерной дискретной линейной системе связь между входом и выходом (входной и выходной дискретными последовательностями значений сигнала – отсчетами), задается линейным оператором преобразования TL:

y(kt) = TL{x(kt)}.

Это выражение отображает краткую запись линейного разностного уравнения:

am y(kt-mt) =bn x(kt-nt), (2.1.1)

где k = 0, 1, 2, …- порядковый номер отсчетов, t - интервал дискретизации сигнала, am и bn - вещественные или, в общем случае, комплексные коэффициенты. Положим a0 = 1, что всегда может быть выполнено соответствующей нормировкой уравнения (2.1.1), и, принимая в дальнейшем t = 1, т.е. переходя к числовой нумерации цифровых последовательностей значений сигналов, приведем его к виду:

y(k) = bn x(k-n) –am y(k-m). (2.1.2)

Оператор, представленный правой частью данного уравнения, получил название цифрового фильтра (ЦФ), а выполняемая им операция - цифровой фильтрации данных (информации, сигналов). Если хотя бы один из коэффициентов am или bn зависит от переменной k, то фильтр называется параметрическим, т.е. с переменными параметрами. Ниже мы будем рассматривать фильтры с постоянными коэффициентами (инвариантными по аргументу).

Основные достоинства цифровых фильтров по сравнению с аналоговыми.

Нерекурсивные фильтры. При нулевых значениях коэффициентов am уравнение (2.1.2) переходит в уравнение линейной дискретной свертки функции x(k) с оператором bn:

y(k) = bn x(k-n). (2.1.3)

Значения выходных отсчетов свертки (2.1.3) для любого аргумента k определяются текущим и "прошлыми" значениями входных отсчетов. Такой фильтр называется нерекурсивным цифровым фильтром (НЦФ). Интервал суммирования по n получил название "окна" фильтра. Окно фильтра составляет N+1 отсчет, фильтр является односторонним каузальным, т.е. причинно обусловленным текущими и "прошлыми" значениями входного сигнала, и выходной сигнал не может опережать входного. Каузальный фильтр может быть реализован физически в реальном масштабе времени. При k
При обработке данных на ЭВМ ограничение по каузальности снимается. В программном распоряжении фильтра могут находиться как "прошлые", так и "будущие" значения входной последовательности отсчетов относительно текущей точки вычислений k, при этом уравнение (2.1.3) будет иметь вид:

y(k) =bn x(k-n). (2.1.4)

При N' = N фильтр называется двусторонним симметричным. Симметричные фильтры, в отличие от односторонних фильтров, не изменяют фазы обрабатываемого сигнала.

Так как реакция НЦФ на единичный входной импульс (а равно и на любой произвольный входной сигнал) всегда конечна и ограничена размером окна фильтра, такие фильтры называют также фильтрами с конечной импульсной характеристикой (КИХ-фильтры).

Техника выполнения фильтрации не отличается от техники выполнения обычной дискретной свертки двух массивов данных.

Представим, что на одной полоске бумаги выписаны по порядку сверху вниз значения данных x(k) ? sk (см. рис. 2.1.1). На второй полоске бумаги находятся записанные в обратном порядке значения коэффициентов фильтра bn ? hn (обозначение h для коэффициентов операторов НЦФ является общепринятым). Для вычисления yk ? y(k) располагаем вторую полоску против первой таким образом, чтобы значение h0 совпало со значением sk, перемножаем все значения hn с расположенными против них значениями sk-n, и суммируем все результаты перемножения. Результат суммирования является выходным значением сигнала yk. Сдвигаем окно фильтра - полоску коэффициентов hk, на один отсчет последовательности sk вниз (или массив sk сдвигаем на отсчет вверх) и вычисляем аналогично следующее значение выходного сигнала, и т.д.




Рис. 2.1.1. Нерекурсивный ЦФ.
Описанный процесс является основной операцией цифровой фильтрации, и называется сверткой в вещественной области массива данных x(k) с функцией (оператором) фильтра bn (массивом коэффициентов фильтра). Для математического описания наряду с формулами (2.1.3-2.1.4) применяется также символические формы записи фильтрации:

y(k) = b(n) * x(k-n) є b(n) x(k-n).

Сумма коэффициентов фильтра определяет коэффициент передачи (усиления) средних значений сигнала в окне фильтра и постоянной составляющей в целом по массиву данных (с учетом начальных и конечных условий). Как правило, сумма коэффициентов фильтра нормируется к 1.

Имеется целый ряд методов обработки данных, достаточно давно и широко известных, которые по существу относятся к методам цифровой фильтрации, хотя и не называются таковыми. Например, методы сглаживания отсчетов в скользящем окне постоянной длительности. Так, для линейного сглаживания данных по пяти точкам с одинаковыми весовыми коэффициентами используется формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

С позиций цифровой фильтрации это не что иное, как двусторонний симметричный нерекурсивный цифровой фильтр:

yk =bn xk-n, bn = 0,2. (2.1.5)

Аналогично, при сглаживании данных методом наименьших квадратов (МНК) на основе кубического уравнения:

yk = (-3xk-2+12xk-1+17xk+12xk+1-3xk+2)/35. (2.1.6)

Это также НЦФ с коэффициентами: b0 = 17/35, b1 = b-1 = 12/35, b2 = b-2 = -3/35.

Пример. Уравнение НЦФ: yk =bn xk-n, bn = 0,2. Начальные условия - нулевые.

Входной сигнал – скачок функции (ступень): xk = {0,0,0,0,0,0,10,10,10,10,…}.

Выходной сигнал: yk = {0,0,0,0,2,4, 6, 8,10,10,10,10,…}.

Результат фильтрации приведен на рис. 2.1.2(А). Проверьте результат (выполните фильтрацию, как это показано на рис. 2.1.1, с учетом четности фильтра).




Рис. 2.1.2. Сглаживание МНК в скользящем окне по пяти точкам
Заметим: сумма коэффициентов сглаживающих НЦФ всегда должна быть равна 1, при этом сумма значений массива выходного сигнала равна сумме значений массива входного сигнала. Координатная детальность выходного сигнала ниже входного, резкие изменения входных сигналов "размазываются" по аргументу.

Повторите фильтрацию фильтром МНК на основе кубического уравнения. Сравните результаты фильтрации с результатами первого НЦФ (приведены на рис. 2.1.2(В)).

Для операции фильтрации характерны следующие основные свойства:

Фильтрация однозначно определяет выходной сигнал y(k) для установленного значения входного сигнала s(k) при известном значении импульсного отклика фильтра h(n).




Рис. 2.1.3. Рекурсивный ЦФ.
Рекурсивные фильтры. Фильтры, которые описываются полным разностным уравнением (2.1.2)

y(k) = bn x(k-n) –am y(k-m),

принято называть рекурсивными цифровыми фильтрами (РЦФ), так как в вычислении текущих выходных значений участвуют не только входные данные, но и значения выходных данных фильтрации, вычисленные в предшествующих циклах расчетов. С учетом последнего фактора рекурсивные фильтры называют также фильтрами с обратной связью, положительной или отрицательной в зависимости от знака суммы коэффициентов am. По существу, полное окно рекурсивного фильтра состоит из двух составляющих: нерекурсивной части bn, ограниченной в работе текущими и "прошлыми" значениями входного сигнала (при реализации на ЭВМ возможно использование и “будущих” отсчетов сигнала) и рекурсивной части am, которая работает только с "прошлыми" значениями выходного сигнала. Техника вычислений для РЦФ приведена на рис. 2.1.3.

Пример. Уравнение РЦФ: yk = boxk+a1yk-1, при bo = a1 = 0.5, y-1 = 0.

Входной сигнал: xk = {0,0,1,0,0,0,0,0,0,0,1,1,1,1,1....}

Расчет выходного сигнала:

уо = 0,5xo + 0,5y-1 = 0; y1 = 0,5x1 + 0,5yo =0; y2 = 0,5x2 + 0,5y1 = 0.5; y3 = 0,5x3 + 0,5y2 = 0.25;

y4 = 0,5x4 + 0,5y3 = 0.125; y5 = 0,5x5 + 0,5y4 = 0.0625; y6 = 0,5x6 + 0,5y5 = 0.03125; и т.д.

Выходной сигнал: yk = {0, 0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625,...}



Рис. 2.1.4. Рекурсивная фильтрация.

Из примера можно видеть, что реакция РЦФ на конечный входной сигнал (например, на единичный импульс Кронекера в точке 2), в результате действующей положительной обратной связи, в принципе, может иметь бесконечную длительность (в данном случае с близкими к нулю, но не нулевыми значениями), в отличие от реакции НЦФ, которая всегда ограничена количеством членов bk (окном фильтра). Фильтры такого типа называют также фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры).

Пример. Уравнение РЦФ: yk = boxk - a1yk-1, при bo = 0.5, a1=1.1, y-1 = 0

Входной сигнал: xk = {0, 10, 0, 0, 0,....}.

Выходной сигнал: yk = {0,0,5,-5.5,6.05,-6.655,7.321,-8.053,8.858,-9.744,10.718,-11.79,… и т.д.}

Заметим: коэффициент обратной связи больше a1 > 1 и выходной сигнал идет "в разнос".



Рис. 2.1.5. Неустойчивый рекурсивный фильтр.

Операции, относящиеся к рекурсивной фильтрации, также известны в обычной практике, например - интегрирование. При интегрировании по формуле трапеций:

yk = (xk+xk-1)/2 + yk-1, (2.1.7)

т.е. здесь мы имеем РЦФ с коэффициентами: bo = b1 = 0.5, a1 = 1.

Пример. Уравнение РЦФ: yk=(xk+xk-1)/2+yk-1, начальные условия - нулевые.

Входной сигнал: xk={0,0,2,2,4,0,0,0,4,4,4,0,0,0,5,0,0,0,....}

Выполните фильтрацию. Контроль: yk= {0,0,0,1,3,6,8,8,8,10,14,18,20,20,20,22.5,25,25,25...}



2.1.6. Интегрирующий рекурсивный фильтр.

2.2. Импульсная реакция фильтров.

Функция отклика. Если на вход нерекурсивного фильтра подать единичный импульс (импульс Кронекера), расположенный в точке k = 0, то на выходе фильтра мы получим его реакцию на единичный входной сигнал (формула 2.1.3), которая определяется весовыми коэффициентами bn оператора фильтра:

y(k) = TL[(0)] = bn ③(k-n) = h(k) ? bn. (2.2.1)

Для рекурсивных фильтров реакция на импульс Кронекера зависит как от коэффициентов bn фильтра, так и от коэффициентов обратной связи am. С использованием формулы (2.1.2):

y(k) = bn (k-n) –am y(k-m) = hk. (2.2.1')

Функция h(k), которая связывает вход и выход фильтра по реакции на единичный входной сигнал и однозначно определяется оператором преобразования фильтра, получила название импульсного отклика фильтра (функции отклика).

Если произвольный сигнал на входе фильтра представить в виде линейной комбинации взвешенных импульсов Кронекера

x(k) =(n) x(k-n),

то, с использованием функции отклика, сигнал на выходе фильтра можно рассматривать как суперпозицию запаздывающих импульсных реакций на входную последовательность взвешенных импульсов:

y(k) = h(n) (n) x(k-n)) є h(n) x(k-n).

Для нерекурсивных фильтров пределы суммирования в последнем выражении устанавливаются непосредственно по длине импульсного отклика h(n). Для рекурсивных фильтров длина импульсного отклика, в принципе, может быть бесконечной.

Определение импульсной реакции на практике требуется, как правило, только для рекурсивных фильтров, так как импульсная реакция для НЦФ при известных значениях коэффициентов b(n), как это следует из выражения (2.2.1), специального определения не требует: h(n) ? b(n).

Если выражение для системы известно в общей форме (2.1.2), определение импульсной реакции производится подстановкой в уравнение системы импульса Кронекера с координатой k = 0 при нулевых начальных условиях. В соответствии с выражением (2.2.1) сигнал на выходе системы будет представлять собой импульсную реакцию системы.

Пример. Уравнение РЦФ: yk = xk + 0.5yk-1.

Входной сигнал: xk= o= {1,0,0,0,...}.

Расчет выходного сигнала при нулевых начальных условиях:

yo = xo+0.5 y-1 = 1+0 = 1 = ho. y1 = x1+0.5 yo = 0+0.5 = 0.5 = h1. y2 = x2+0.5 y1 = 0+0.25 = 0.25 = h2.

y3 = x3+0.5 y2 = 0.125 = h3. y4 = x4+0.5 y3 = 0.0625 = h4, и т.д.

Импульсный отклик фильтра: hk = (O.5)k, k = 0, 1, 2....

Определение импульсной реакции физической системы обычно производится подачей на вход системы ступенчатой функции (функции Хевисайда), которая равна u(k) = 1 при k і 0, и u(k) = 0 при k < 0:

g(k) =h(n) u(k-n) =h(n).

Отсюда:

h(k) = g(k) - g(k-1).

Функция g(k) получила название переходной характеристики системы (перехода из одного статического состояния в другое). Форму реакции фильтра на функцию Хевисайда можно видеть на рис. 2.1.4 (с точки k = 10 и далее) в сопоставлении с реакцией на импульс Кронекера в точке k = 2.

2.3. Передаточные функции фильтров /7/.

Z-преобразование. Удобным методом решения разностных уравнений линейных систем является z-преобразование. Применяя z-преобразование к обеим частям равенства (2.1.1), c учетом сдвига функций (y(k-m) у zm Y(z)), получаем:

Y(z)amzm = X(z)bnzn, (2.3.1)

где X(z),Y(z)- соответствующие z-образы входного и выходного сигнала. Отсюда, полагая ao = 1, получаем в общей форме функцию связи выхода фильтра с его входом - уравнение передаточной функции системы в z-области:

H(z) = Y(z)/X(z) =bnzn(1+amzm). (2.3.2)

Для НЦФ, при нулевых коэффициентах am:

H(z) =bnzn. (2.3.3)

При проектировании фильтров исходной, как правило, является частотная передаточная функция фильтра H(?), по которой вычисляется ее Z-образ H(z) и обратным переходом в пространство сигналов определяется алгоритм обработки данных. В общей форме для выходных сигналов фильтра:

Y(z) = H(z)·X(z).

Y(z)·(1+am zm) = X(z)bn zn

Y(z) = X(z)bn zn – Y(z)am zm. (2.3.4)

После обратного Z-преобразования выражения (2.3.4):

y(k) =bn x(k-n) –am y(k-m). (2.3.5)

При подаче на вход фильтра единичного импульса Кронекера о, имеющего z-образ (z) = zn = 1, сигнал на выходе фильтра будет представлять собой импульсную реакцию фильтра y(k) ? h(k), при этом:

H(z) = Y(z)/(z) = Y(z) = TZ[y(k)] =h(k) zk, (2.3.6)

т.е. передаточная функция фильтра является z-образом ее импульсной реакции. При обратном z-преобразовании передаточной функции соответственно получаем импульсную характеристику фильтра:

h(k) у H(z). (2.3.7)

Если функция H(z) представлена конечным степенным полиномом, что, как правило, характерно для НЦФ, являющихся КИХ-фильтрами, то обратное z-преобразование осуществляется элементарно идентификацией коэффициентов по степеням z. Передаточная функция РЦФ также может быть представлена степенным полиномом прямым делением числителя на знаменатель правой части выражения (2.3.2), однако результат при этом может оказаться как конечным, так и бесконечным, т.е. система может иметь либо конечную, либо бесконечную импульсную характеристику. Практически используемые рекурсивные фильтры обычно имеют бесконечную импульсную характеристику (БИХ-фильтры) при конечном числе членов алгоритма фильтрации (2.3.5).

Примеры.

1. Передаточная функция РЦФ: H(z) = (1-z5)/(1-z).

Прямым делением числителя на знаменатель получаем: H(z) = 1+z+z2+z3+z4.

H(z) у h(n) = {1,1,1,1,1}. Фильтр РЦФ является КИХ-фильтром.

2. Передаточная функция: H(z) = 1/(1-2z).

Методом обратного z-преобразования: h(n) = 2n. Фильтр РЦФ является БИХ-фильтром.

Устойчивость фильтров. Фильтр называется устойчивым, если при любых начальных условиях реакция фильтра на любое ограниченное воздействие также ограничена. Критерием устойчивости фильтра является абсолютная сходимость отсчетов его импульсного отклика:

|h(n)| < Ґ. (2.3.8)

Анализ устойчивости может быть проведен по передаточной функции. В устойчивой системе значение H(z) должно быть конечным во всех точках z-плоскости, где |z| Ј 1, а, следовательно, передаточная функция не должна иметь особых точек (полюсов) на и внутри единичного круга на z-плоскости. Полюсы H(z) определяются корнями многочлена знаменателя передаточной функции (2.3.2).

Пример.

Передаточная функция фильтра рис. 2.1.4: H(z) = b0/(1-a1z). При а1= 0.5 полюс знаменателя: zр= 2. |zр|>1. Фильтр устойчив.

Передаточная функция фильтра рис. 2.1.5: H(z) = b0/(1+a1z). При а1= 1.1 полюс знаменателя: zр= -0.909. |zр| < 1. Фильтр неустойчив, что и подтверждает пример фильтрации.

Передаточная функция фильтра рис. 2.1.6: H(z) = 0.5(1+z)/(1-z). Полюс знаменателя: zр= 1. В принципе, фильтр неустойчив, но эта неустойчивость проявляется только при k = ?. Импульсный отклик фильтра h(n) = {0.5,1,1,1, ….}, сумма которого равна ? только при n = ?, т.е. при интегрировании бесконечно больших массивов. При интегрировании конечных массивов результат всегда конечен.

Приведенный критерий устойчивости относится к несократимой дроби, т.к. в противном случае возможна компенсация полюса нулем передаточной функции, и следует проверить наличие однозначных нулей и полюсов.

Проверка на устойчивость требуется только для рекурсивных цифровых фильтров (систем с обратной связью), нерекурсивные системы всегда устойчивы.

2.4. Частотные характеристики фильтров /2,13,24/.

Общие понятия. От z-образов сигналов и передаточных функций подстановкой z = exp(-jt) в уравнение (2.3.2) можно перейти к Фурье-образам функций, т.е. к частотным спектрам сигналов и частотной характеристике фильтров, а точнее – к функциям их спектральных плотностей.

Можно применить и способ получения частотных характеристик непосредственно из разностного уравнения системы обработки данных. Так как цифровая фильтрация относится к числу линейных операций, то, принимая для сигнала на входе фильтра выражение x(kt) = B() exp(jkt), мы вправе ожидать на выходе фильтра сигнал y(kt) = A() exp(jkt). Подставляя эти выражения в разностное уравнение фильтра (2.1.1), получаем:

am A() exp(jkt-jmt) =bn B() exp(jkt-jnt).

A() exp(jkt) am exp(-jmt) = B() exp(jkt)bn exp(-jnt).

A()am exp(-jmt) = B()bn exp(-jnt). (2.4.1)

Передаточная частотная функция (частотная характеристика при ао=1):

H() = A()/B() =bn exp(-jnt)[1+am exp(-jmt)]. (2.4.2)

Нетрудно убедиться, что полученная частотная характеристика повторяет функцию (2.3.2) при z = exp(-jt), что и следовало ожидать. Аналогично z-преобразованию (2.3.7), частотная характеристика фильтра представляет собой Фурье-образ его импульсной реакции, и наоборот. При t = 1:

H() =h(n) exp(-jn), (2.4.3)

h(n) = (1/2)H() exp(jn) d. (2.4.4)

В общем случае H() является комплексной функцией, модуль которой R() называется амплитудно-частотной характеристикой (АЧХ), а аргумент () – фазово-частотной характеристикой (ФЧХ).

A() = |H()| =

() = arctg(-Im H()/Re H()).

Выбор знака фазового угла ориентирован на каузальные системы с отрицательным временным запаздыванием сигналов. Допустим, что система осуществляет только сдвиг сигнала x(t) вправо по временной оси, т е. y(t) = x(t-). Для преобразования Фурье функции y(t) имеем:

Y(f) =y(t) exp(-j2ft) dt =x(t-) exp(-j2ft) dt =

= exp(-j2f)x(t) exp(-j2ft) dt = exp(-j2f) X(f).

Отсюда:

H(f) = Y(f)/X(f) = exp(-j2ft), |H(f)| = 1, h(f) = -2f.

Из последнего равенства следует, что фаза представляет собой прямую с отрицательным тангенсом угла наклона -2f. Соответственно, для всех каузальных фильтров, осуществляющих преобразование с определенной задержкой сигнала на выходе, при выполнении операции над частотными составляющими сигнала имеет место:

Y(f) = H(f) X(f) = |H(f)| exp(jh(f)) |X(f)| exp(jx(f)) = |H(f)| |X(f)| exp{jh(f)+x(f)]},

|Y(f)| = |H(f)| |X(f)|, y(f) = h(f)+x(f).

C учетом отрицательного знака h(f) фазовой характеристики каузальных фильтров это вызывает сдвиг в "минус" всех частотных составляющих сигнала и соответствующую задержку выходного сигнала относительно входного.

На рис. 2.4.1-2.4.3 приведены частотные характеристики фильтров (модули и аргументы спектральных плотностей), которые были рассмотрены выше в примерах и на рис. 2.1.4 – 2.1.6. Графики приведены в границах главных диапазонов спектров, и получены непосредственной подстановкой z=exp(-jt) при t=1 в уравнения передаточных функций H(z).



Рис. 2.4.1. Спектр не имеет особых точек.



Рис. 2.4.2. Спектр имеет особые точки на границах диапазонов.



Рис. 2.4.3. Спектр интегрирующего фильтра. Особая точка на нулевой частоте.

При обработке ограниченных массивов амплитуда центрального пика равна количеству точек массива.

Основные свойства частотных характеристик цифровых фильтров:

1. Частотные характеристики являются непрерывными функциями частоты.

2. При дискретизации данных по интервалам t функция H() является периодической. Период функции H() равен частоте дискретизации входных данных F = 1/t. Первый низкочастотный период (по аргументу  от -/t до /t, по f от -1/2t до 1/2t) называется главным частотным диапазоном. Граничные частоты главного частотного диапазона соответствуют частоте Найквиста ±N, N = /t. Частота Найквиста определяет предельную частоту данных, которую способен обрабатывать фильтр.

3. Для фильтров с вещественными коэффициентами импульсной реакции h(nt) функция АЧХ является четной, а функция ФЧХ - нечетной. С учетом этого частотные характеристики фильтров обычно задаются только на интервале положительных частот 0-N главного частотного диапазона. Значения функций на интервале отрицательных частот являются комплексно сопряженными со значениями на интервале положительных частот.

Как правило, при частотном анализе фильтров значение t интервала дискретизации принимают за 1, что соответственно определяет задание частотных характеристик на интервале (0,) по частоте  или (0,1/2) по f. При использовании быстрых преобразований Фурье (БПФ) вычисления спектров осуществляются в одностороннем варианте положительных частот в частотном интервале от 0 до 2 (от 0 до 1 Гц), где комплексно сопряженная часть спектра главного диапазона (от - до 0) занимает интервал от  до 2 (для ускорения вычислений используется принцип периодичности дискретных спектров). Заметим, что при выполнении БПФ количество точек спектра равно количеству точек входной функции, а, следовательно, отсчет на частоте 2, комплексно сопряженный с отсчетом на частоте 0, отсутствует. При нумерации точек входной функции от 0 до N он принадлежит точке N+1 - начальной точке следующего периода, при этом шаг по частоте равен 2/(N+1). Современное программное обеспечение БПФ допускает любое количество точек входной функции, при этом для нечетного значения N частоте  соответствует отсчет на точке (N+1)/2, не имеющий сопряженного отсчета, а при четном значении N отсутствует отчет на частоте  (она располагается между отсчетами k=N/2 и N/2 +1). Отсчетам с номерами k главного диапазона БПФ (за исключением точки k=0) соответствуют комплексно сопряженные отсчеты N+1-k (за исключением точки k=(N+1)/2 при нечетном N).

Фазовая и групповая задержка. Задержка сигналов во времени относится к характерной особенности каузальных систем в целом, а, следовательно, рекурсивных и односторонних нерекурсивных фильтров.

Фазовая задержка, это прямая характеристика временной задержки фильтром гармонических колебаний. При подаче на вход фильтра гармоники sin t, сигнал на выходе каузального фильтра, без учета изменения его амплитуды, равен sin(t-), при этом:

sin(t-) = sin (t-tp), ?t- = ?(t-tp).

Отсюда, фазовая задержка tp на частоте  равна:

tp = /?. (2.4.5')

При распространении (2.4.5) в целом на спектральную передаточную функцию фильтра получаем:

tp()= /?. (2.4.5)

Постоянство значения tp() в определенном частотном диапазоне обеспечивает для всех гармоник сигнала такое же соотношение их фазовых характеристик, какое было на входе системы, т.е. не изменяет формы сигнала, если его спектр полностью сосредоточен в этом частотном диапазоне, и значения АЧХ в этом диапазоне также имеют постоянное значение. Это условие является определяющим, например, для систем передачи данных, для сглаживающих и полосовых частотных фильтров.

Что касается каузальных фильтров, то они, как правило, имеют в рабочем диапазоне определенную зависимость значения tp от частоты, которая характеризуется групповым временем задержки (ГВЗ). ГВЗ характеризует среднюю временную задержку составного сигнала.

Допустим, что сигнал на входе фильтра представляет собой сумму двух гармоник с близкими частотами:

s(t) = cos ?1t + cos ?2t.

Тождественная тригонометрическая запись:

s(t) = 2 cos[0.5(?1+?2)t] · cos[0.5(?1-?2)t].

Эта запись показывает, что сумму двух гармоник с частотами ?1 и ?2 можно рассматривать, как амплитудную модуляцию гармоники с частотой (?1+?2)/2 гармоникой с частотой (?1-?2)/2. При прохождении через фильтр каждая из гармоник ?1 и ?2 может получить различную задержку, при этом сигнал на выходе фильтра, без учета амплитудных изменений:

s(t) = cos (?1t-1) + cos(?2t-2).

Тождественная запись:

s(t) = 2 cos[0.5((?1+?2)t-(1+2))] · cos[0.5((?1-?2)t-(1-2))].

Пульсацию колебаний выразим через групповую временную задержку tg:

cos[0.5((?1-?2)t-(1-2))] = cos[0.5(?1-?2)·(t-tg)].

Отсюда:

(?1-?2)·tg = 1-2.

tg = (1-2)/(?1-?2) = /?. (2.4.6)

При распространении этого выражения на непрерывную частотную характеристику фильтра:

tg(?)= d()/d?. (2.4.7)

Для вычислений ГВЗ удобно использовать комплексный логарифм передаточной функции фильтра:

Ln H(?) = ln |H(?)| + j·(?), (?) = Im [Ln H(?)].

tg(?)= d/d? = Im{d[Ln(H(?))]/d?} = Im{dH(?)/[H(?)d?]}. (2.4.8)

Приближение для дискретных спектральных функций:

tg(k·?) ? (2/?) Im{(Hk+1-Hk) / (Hk+1+Hk)}. (2.4.9)

Различают фильтры с линейной и нелинейной фазовой характеристикой.

В фильтрах с нелинейной фазовой характеристикой частотные компоненты сигнала задерживаются на величину, не пропорциональную частоте, и тем самым в выходном сигнале изменяется гармоническая связь между его компонентами, что может быть недопустимо во многих случаях обработки сигналов (передача данных, обработка биосигналов, воспроизведение музыки и видео, и пр.).

Чтобы фильтр имел линейную фазовую характеристику необходимо и достаточно, если выполняется одно из следующих условий:

(2.4.10)

 (2.4.11)

где  и  - константы. Условие (2.4.10) обеспечивает постоянные значения групповой и фазовой задержки. Оно выполняется, если импульсная характеристика фильтра имеет положительную симметрию:

h(n) = h(N-n-1), n = 0, 1, 2, …, (N-1)/2, N – нечетное;

n = 0, 1, 2, …, (N/2)-1, N – четное.

При этом фазовая характеристика является функцией длины фильтра:

(N-1)/2.

Пример.

Импульсный отклик фильтра задан параметрами: N=7, h(0)=h(6), h(1)=h(5), h(2)=h(4), h(3).

Передаточная функция фильтра: H(z) = h(k) zk. Подставляем z=exp(-jt) при t = 1 и получаем частотную характеристику фильтра в главном диапазоне (-, ):

H() = h(0)+h(1)exp(-j)+h(2)exp(-2j)+ h(3)exp(-3j)+h(4)exp(-4j)+ h(5)exp(-5j)+h(6)exp(-6j) =

= exp(-3j) {h(0)[exp(3j)+exp(-3j)] + h(1)[exp(2j)+exp(-2j)] + h(2)[exp(j)+exp(-j)] + h(3)} =

= exp(-3j) {2h(0) cos(3j) + 2h(1) cos(2j) + 2h(2) cos(j) + h(3)}.

Изменяя обозначения и переходя к индексации относительно центра симметрии a(0) = h(3), a(n) = 2h(3-n), n=1, 2, 3, записываем в компактной форме:

H() =a(n) cos(nj) exp(-3j) = |H()| exp(j()), () = -3єN-1)/2.

Частотная характеристика фильтра линейна.

Условие (2.4.11) обеспечивает постоянную групповую задержку и выполняется при отрицательной симметрии импульсной характеристики фильтра:

h(n) = -h(N-n-1),

 = (N-1)/2,  = /2.

Для того чтобы убедиться в последнем, достаточно рассмотреть пример, аналогичный вышеприведенному.

Корреляция входа и выхода фильтров может быть получена на основе следующих простых соображений.

Примем для входного сигнала x(t)«X(f) и выходного сигнала y(t)«Y(f) за основу выражение преобразования в частотной области

Y(f) = H(f) X(f). (2.4.12)

Умножим обе части этого выражения на комплексно сопряженную функцию X*(t) и найдем математические ожидания левой и правой части:

M{X*(f) Y(f)} = M{X*(f) H(f) X(f)} = H(f) M{X*(f) X(f)}.

Но математические ожидания этих произведений спектров представляют собой спектры плотности мощности, и, при обратном преобразовании Фурье, зависимость взаимной корреляционной функции входного и выходного сигналов фильтра от корреляционной функции входного сигнала и функции импульсного отклика фильтра:

Wxy = H(f) Wx « h(t) ③ Bx() = Bxy().

Это выражение в спектральной области может использоваться для практического определения частотных передаточных функций фильтров с неизвестной формой импульсных откликов.

Если математические ожидания взять от квадратов модулей левой и правой части исходного выражения (2.4.12), то в результате получим выражения:

Wy(f) = |H(f)|2 Wx(f) « Bh() ③ Bx().

Области применения НЦФ и РЦФ обычно обуславливаются видом их передаточных функций.

В принципе, нерекурсивные цифровые фильтры универсальны и способны реализовать любые практические задачи обработки сигналов. Это и понятно, т.к. реакция РЦФ на единичный импульс Кронекера представляет собой импульсный отклик НЦФ, а, следовательно, задачи, решаемые РЦФ, могут выполняться и НЦФ, но при условии отсутствия ограничений по размерам окна. В первую очередь это касается реализации БИХ-фильтров с незатухающим или слабо затухающим импульсным откликом, например, интегрирующих или фильтров рекурсивной деконволюции. Ограничение по размерам окна является скорее не теоретическим (бесконечных операторов НЦФ не требуется, максимум – двойная длина входного сигнала для двусторонних НЦФ), а чисто практическим. Нет смысла применять НЦФ с огромными размерами операторов и тратить машинное время, если та же задача во много раз быстрее решается рекурсивным фильтром.

Существенным преимуществом НЦФ является их устойчивость, возможность выполнения в виде двусторонних симметричных фильтров, не изменяющих фазу выходных сигналов относительно входных, и реализации строго линейных фазовых характеристик.

С другой стороны, нерекурсивные фильтры могут быть преобразованы в рекурсивные фильтры, если есть возможность z-полином передаточной функции НЦФ выразить в виде отношения двух коротких z-полиномов РЦФ типа (2.3.2), что может дать существенное повышение производительности вычислений. Как правило, такая возможность имеется для сходящихся степенных рядов. Отношение двух z-полиномов позволяет реализовать короткие и очень эффективные фильтры с крутыми срезами на частотных характеристиках.
2.5. Структурные схемы цифровых фильтров /8, 21/.

Структурные схемы. Алгоритмы цифровой фильтрации сигналов (цифровых фильтров) представляются в виде структурных схем, базовые элементы которых показаны на рисунке 2.5.1 вместе с примерами структурных схем фильтров. Как правило, структурные схемы соответствуют программной реализации фильтров на ЭВМ, но не определяют аппаратной реализации в специальных радиотехнических устройствах, которая может существенно отличаться от программной реализации.



Рис. 2.5.1. Структурные схемы цифровых фильтров.




Рис. 2.5.2. Граф фильтра.
Графы фильтров. Наряду со структурной схемой фильтр может быть представлен в виде графа, который отображает диаграмму прохождения сигналов, и состоит из направленных ветвей и узлов.

Пример структурной схемы фильтра с передаточной функцией H(z) = (1+b1z)/(1+a1z) и графа, ей соответствующего, приведен на рисунке 2.5.2. С каждым i - узлом графа связано значение сигнала xi(k) или его образа Xi(z), которые определяются суммой всех сигналов или z-образов входящих в узел ветвей. В каждой ij - ветви (из узла i в узел j) происходит преобразование сигнала в соответствии с передаточной функцией ветви, например задержка сигнала или умножение на коэффициент.

Соединения фильтров. Различают следующие соединения фильтров.




Рис. 2.5.3.
1. Последовательное соединение (рис. 2.5.3). Выходной сигнал предшествующего фильтра является входным для последующего. Эквивалентная передаточная функция общей системы равна произведению передаточных функций фильтров, в нее входящих: H(z) = H1(z)ЧH2(z)Ч...ЧHN(z).




Рис. 2.5.4.
2. Параллельное соединение (рис. 2.5.4). Сигнал подается на входы всех параллельно соединенных фильтров одновременно, выходные сигналы фильтров суммируются. Эквивалентная передаточная функция общей системы равна сумме передаточных функций фильтров, в нее входящих: H(z) = H1(z)+H2(z)+...+HN(z).




Рис. 2.5.5.
3. Соединение обратной связи (рис. 2.5.5). Выходной сигнал первого фильтра подается на выход системы и одновременно на вход фильтра обратной связи, выходной сигнал которого суммируется, со знаком плюс или минус в зависимости от вида связи (отрицательной или положительной), с входным сигналом системы. Эквивалентная передаточная функция системы: H(z) = H1(z)/(1±H1(z)H2(z)).

Схемы реализации фильтров. По принципам структурной реализации фильтров различают следующие схемы:




Рис. 2.5.6.
1. Прямая форма (рис. 2.5.6) реализуется непосредственно по разностному уравнению

yk =bnxk-namyk-m,

или по передаточной функции

H(z) =bnzn /(1+amzm).

2. Прямая каноническая форма содержит минимальное число элементов задержки. Передаточную функцию РЦФ можно представить в следующем виде:




Рис. 2.5.7.
H(z) = Y(z)/X(z) = H1(z)H2(z),

H1(z) = V(z)/X(z) = 1/(1+amzm),

H2(z) = Y(z)/V(z) =bnzn.

Отсюда: v(k) = x(k) -amv(k-m), (2.5.1)

y(k) =bnv(k-n). (2.5.2)

В разностных уравнениях (2.5.1-2.5.2) осуществляется только задержка сигналов v(k). Граф реализации РЦФ в прямой канонической форме приведен на рисунке 2.5.7.

3. Каскадная (последовательная) форма соответствует представлению передаточной функции в виде произведения:

H(z) =Hi(z).

Hi(z) - составляющие функции вида (1-riz)/(1-piz) при представлении H(z) в факторизованной форме, где ri и pi - нули и полюсы функции H(z). В качестве функций Hi(z) обычно используются передаточные функции биквадратных блоков - фильтров второго порядка:

Hi(z) = (b0i + b1i Чz + b2i Чz2) / (1 + a1i Чz + a2i Чz2).

4. Параллельная форма используется много реже, и соответствует представлению передаточной функции в виде суммы биквадратных блоков или более простых функций.




Рис. 2.5.8.
Обращенные формы. В теории линейных направленных сигнальных графов существуют процедуры преобразования исходных графов с сохранением передаточных функций. Одна из таких процедур - обращение (транспозиция) графов, которая выполняется путем изменения направления всех ветвей цепи, при этом вход и выход графа также меняются местами. Для ряда систем такая транспозиция позволяет реализовать более эффективные алгоритмы обработки данных. Пример обращения графа прямой канонической формы рекурсивной системы (с перестроением графа на привычное расположение входа с левой стороны) приведен на рис. 2.5.8.

литература

2. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.- 448 с.

7. Гольденберг Л.М. и др. Цифровая обработка сигналов: Справочник. - М.: Радио и связь, 1985.- 312 с.

8. Гольденберг Л.М. и др. Цифровая обработка сигналов: Учебное пособие для вузов. - М.: Радио и связь, 1990.- 256 с.

13. Клаербоут Д.Ф. Теоретические основы обработки геофизической информации с приложением к разведке нефти. – М.: Недра, 1981. – 304 с.

21. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. – М.: Мир, 1978. – 848 с.

24. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с.

43. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с. [kgl]


Тема 3. ФИЛЬТРЫ СГЛАЖИВАНИЯ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

Не перестаю удивляться дерзкой гениальности Стефенсона и братьев Черепановых. Как они отважились построить паровоз, не располагая теорией его движения?

Архив Кифы Васильевича. Наука и жизнь, 1984.

Пока нет теории, есть возможность войти в Историю. Бог прославился созданием Евы из ребра Адама без всякого теоретического обоснования. А когда теория есть, можно только влипнуть в какую-нибудь историю.

Лариса Ратушная. Уральский геофизик, XX в.
Содержание

Введение.

1. Фильтры МНК 1-го порядка. Расчет коэффициентов фильтра. Импульсная реакция фильтра. Частотная характеристика фильтра. Модификация фильтра. Оптимизация сглаживания.

2. Фильтры МНК 2-го порядка. Расчет фильтров. Частотные характеристики фильтров. Модификация фильтров.

3. Фильтры МНК 4-го порядка.

4. Расчет простого цифрового фильтра по частотной характеристике.
  1   2   3   4   5   6   7   8   9   ...   16


ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации