Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n119.htm

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n119.htm


Тема 8.  Z-ПРЕОБРАЗОВАНИЕ СИГНАЛОВ И СИСТЕМНЫХ ФУНКЦИЙ.

Чего не понимают, тем не владеют.

Иоганн Вольфганг Гете. 1770-1831 г.

Великим было хорошо. Записал мудрую мысль и пошел кофе пить. А тут иногда понимаешь как попугай нотную грамоту, владеешь как рыба ружьем, а делать приходится. И что интересно – неплохо получается. Было бы желание.

Виль Ибрагимов. Уральский геофизик, 1937-2006 г.

Содержание

Введение.

1. Z – трансформация сигналов.  Определение z-преобразования. Связь с преобразованиями Фурье и Лапласа. Отображение z-преобразования.

2. Пространство z-полиномов. Область сходимости. Примеры z-преобразования. Аналитическая форма z-образов.

3. Свойства z-преобразования.  Линейность. Задержка. Преобразование свертки. Разложение сигналов на блоки последовательной свертки. Дифференцирование.

4. Обратное z-преобразование. Методы преобразования. Преобразование интегрированием по контуру. Преобразование разложением на дроби. Метод степенных рядов.

5. Применение z – преобразования. Описание дискретных систем. Геометрическая оценка АЧХ и ФЧХ системы. Вычисление частотной характеристики с помощью БПФ. Анализ устойчивости систем. Связь разностных уравнений и передаточных функций.

Введение

            Цифровая обработка сигналов оперирует с дискретными преобразованиями сигналов и обрабатывающих данные сигналы систем. Математика дискретных преобразований зародилась в недрах аналоговой математики еще в 18 веке в рамках теории рядов и их применения для интерполяции и аппроксимации функций, однако ускоренное развитие она получила в 20 веке после появления первых вычислительных машин. В принципе, в своих основных положениях математический аппарат дискретных преобразований подобен преобразованиям аналоговых сигналов и систем. Однако дискретность данных требует учета этого фактора, и его игнорирование может приводить к существенным ошибкам. Кроме того, ряд методов дискретной математики не имеет аналогов в аналитической математике.

Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Оно играет для дискретных сигналов и систем такую же роль, как для аналоговых – преобразование Лапласа. Большое значение z-преобразование имеет для расчетов рекурсивных цифровых систем обработки сигналов, а потому рассматривается отдельной темой перед началом изучения рекурсивных цифровых фильтров.

8.1.  Z – ТРАНСФОРМАЦИЯ сигналов [4, 12, 22].

Определение z-преобразования. Z- преобразование является обобщением дискретного преобразования Фурье. Особенно эффективно оно используется при анализе дискретных систем и, в частности, при проектировании рекурсивных цифровых фильтров.

Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-k. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от -¥ до +¥. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kDt), равно как и непосредственно дискретной функции, можно поставить в однозначное соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:

sk = s(kDt) Û TZ[s(kDt)] =sk zk = S(z).                     (8.1.1)

где z = s+jw = r×exp(-jj) - произвольная комплексная переменная. В показательной форме z =  r×exp(-jj), где r = |z| = , j = arg(z) =argtg(w/s).

  Пример 1:     sk = {1, 2, 0, -1, -2, -1, 0, 0}.    

  S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.

В каузальных системах значения импульсного отклика систем существуют при k ≥ 0 и уравнение (8.1.1) действует в одностороннем варианте:

H(z) =hk zk.

В общем случае, z-преобразование – это степенной ряд с бесконечным количеством членов, поэтому он может сходиться не для всего пространства значений z. Область z, в которой z-преобразование сходится и значения S(z) конечны, называют областью сходимости.

   Пример 2:   Последовательность (сигнал) конечной длины, непричинная:  s-k = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.  

   S(z) = 1z0+2z-1+3z-2+2z-3+1z-4 = 1+2/z+3/z2+2/z3+1/z4.

   Очевидно, что S(z) = ∞ при z = 0. Область сходимости – все значения z, за исключением z = 0.

   Пример 3:  Последовательность конечной длины, причинная (как импульсный отклик каузальной системы):  sk = {1, 2, 3, 2, 1}, k = 0, 1, 2, 3, 4.  

   S(z) = 1z0+2z-1+3z-2+2z-3+1z-4 = 1+2z+3z2+2z3+z4.

   S(z) = ∞ при z = ∞. Область сходимости – все значения z, за исключением z = ∞.

   Пример 4:   Последовательность конечной длины, двусторонняя (как импульсный отклик симметричного фильтра):  sk = {1, 2, 3, 2, 1}, k = -2, -1, 0, 1, 2. 

   S(z) = 1z-2+2z-1+3z0+2z1+1z2 = 1/z2+2/z+3+2z+z2.

   S(z) = ∞ при z = 0 и z = ∞. Область сходимости не включает точки z = 0 и z = ∞.

   Пример 5:   Последовательность бесконечной длины, причинная (как импульсный отклик рекурсивного интегрирующего фильтра):  sk = 0 при k < 0,  s = 1 при k ≥ 0. 

   S(z) = z-0+z1+z2+z3+ … = 1+z+z2+z3+ … = 1/(1-z)

   Ясно, что ряд может удовлетворять условию сходимости только при |z| < 1.

            Значения z, для которых S(z) = ∞, называются полюсами, а для которых S(z) = 0, называются нулями функции S(z). Как видно из примеров, для последовательностей конечной длины z-преобразование сходится везде кроме точки z=∞ для имеющих правостороннюю часть (k≥0), и точки z=0 для имеющих левостороннюю часть (k<0), в любых их комбинациях. Для бесконечных причинных последовательностей преобразование сходится везде внутри круга единичного радиуса с центром в начале координат.

По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.

   Пример 6:  S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.   

   sk = {1, 0, 3, 8, 0, 0, -4, -2}.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала (сдвиг вправо по временной оси) на n интервалов: znS(z) Û s(k-n). Чтобы убедиться в этом, достаточно в приведенном выше примере выполнить умножение многочлена S(z), например на z2, выполнить обратное преобразование и получить новый сигнал sk = {0, 0, 1, 0, 3, 8, 0, 0, -4, -2}.

Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов  не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед". Последнее применяется, например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим"  – с положительными.

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk  в виде суммы весовых импульсов Кронекера:

sk = s(kDt) =s(nDt) d(kDt-nDt).

Определим спектр сигнала по теореме запаздывания:

S(w) =s(kDt) exp(-jwkDt).

Выполним замену переменных, z = exp(-jwDt), и получим:

S(w) =s(kDt)×zk = S(z).

Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jwDt). 

Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:

S(w) = S(z),   z = exp(-jwDt);      S(p) = S(z),   z = exp(-pDt).          (8.1.2)

            Обратное преобразование:

S(z) = S(w),   w = ln z / jDt;           S(z) = S(p),   p = ln z/Dt.               (8.1.3)

            При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jwDt) и z-1 = exp(p).

При zk = exp(-jwkDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.1.1). В частности, спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| = = 1.



Рис. 8.1.1. Комплексная z-плоскость

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста wN = p/Dt (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки wN совпадают, а при дальнейшем повышении  или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.

Отсюда следует также, что область сходимости устойчивых каузальных систем на z-плоскости представляет собой круг единичного радиуса.

Сигналы и системы непрерывного времени очень часто описываются с помощью преобразования Лапласа. Если z=exp(-sDt), где s=s + jw, то

z = exp(-(s + jw)Dt) = exp(-sDt) exp(-jwDt).

            Следовательно, |z| = exp(-sDt), arg(z) = wDt = 2pfDt = 2pf/fD, где  fD - частота дискретизации, при этом ось w отображается на z-плоскости единичной окружностью, правая сторона s-плоскости отображается внутрь окружности, а левая сторона – на внешнюю сторону окружности. При использовании символики z-1 отображение сторон s-плоскости на z-плоскости меняется местами.

8.2. ПРОСТРАНСТВО Z-ПОЛИНОМОВ [2, 12, 36].

Область сходимости. Полином S(z)  (8.1.1) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек:

|sk||z|k < ∞

В общем случае, множества z, для которых полиномы S(z) сходится, образуют на z-плоскости определенные области, показанные на рис. 8.2.1.

5a-1.jpgРис. 8.2.1.

            Из приведенной выше связи z-преобразования с преобразованием Фурье следует, что если функция s(t) имеет спектральное представление S(w), то единичная окружность |z| = |exp (-jw)| = 1 обязательно должна входить в область сходимости полинома S(z). И наоборот, если область сходимости полинома S(z) включает в себя единичную окружность, то дискретное преобразование Фурье функции s(t) – прообраза полинома S(z), должно существовать, а в противном случае – нет. Последнее следует из того, что z-преобразование, являясь более общим случаем преобразования дискретных функций, может существовать и для функций, для которых не существует преобразования Фурье. Примером этого может служить функция единичного скачка:

un = 1,  n ≥ 0;   un = 0,  n < 0.

            Для преобразования Фурье функции u(n) не выполняется условие абсолютной суммируемости (энергия функции бесконечна). Но для z-преобразования имеем:

|uk||z|k =|z|k < ∞,  при |z| < 1.

 

Примеры z-преобразования часто встречающихся на практике дискретных сигналов.

Импульсы Кронекера. В общем случае, для импульса Кронекера в произвольной точке числовой оси:

d(k-n) =1  при k=n,   d(k-n) = 0  при kn.

Xd(z) =d(k-n) zk = zn.

Для импульса Кронекера в нулевой точке соответственно Xd(z) = z0 =1. Ряд Xd(z) сходится на всей z-плоскости.

Функция Хевисайда (единичный скачок, причинная последовательность бесконечной длины, например, импульсный отклик рекурсивного интегрирующего фильтра).

x(k) = 0  при k < 0,   x(k) = 1  при k ³ 0.

X(z) =zk = zk.

            Ряд сходится при |z| < 1, при этом его сумма равна:

X(z) = 1/(1-z).

            Z-преобразование действительно везде внутри круга единичного радиуса с центром в начале координат.

При использовании символики z-1:

X(z) = 1/(1-z-1) = z/(z-1),   |z| > 1.

            На границе области аналитичности функция X(z) имеет один простой полюс при z=1.

            Экспоненциальная функция:

x(k) = 0  при k < 0,   x(k) = ak  при k ³ 0.

X(z) =x(k) zk = ak zk = (az)k.

            Как и в предыдущем случае, ряд сходится при |az| < 1, при этом:

X(z) = 1/(1-az),   |z| < 1/a.

            При использовании символики z-1:

X(z) = z/(z-a),   |z| > a.

            Комплексная экспонента:

x(k) = exp(jwk),  k ≥ 0;   x(k) = 0,  k < 0.

X(z) =exp(jwk) zk =(z exp(jw))k = 1/(1- z exp(jw)),  |z| < 1.

Аналитическая форма z-образов существует для z-преобразований, если возможно свертывание степенного ряда в аналитическое выражение. Выше, в примерах z-преобразования, уже приводилось приведение к аналитической форме z-образов функции Хевисайда и экспоненциальной функции. Ниже в таблице приводится z-трансформация ряда распространенных функций, которые могут использоваться для прямого и обратного преобразования.

Таблица 8.2.1.

Функция s(k), k≥0

z - образ S(z)

z-1 – образ S(z)

b

b / (1-z),               |z| < 1

bz / (z-1),            |z| > 1

b k

bz / (1-z)2,           |z| < 1

bz / (z-1)2,           |z| > 1

b k2

bz (1+z) / (1-z)3,  |z| < 1

bz (z+1) / (z-1)3,  |z| > 1

b ak

b / (1 - za),             |z| < 1/a

 bz / (z - a),          |z| > a

bkak

baz / (1 - za)2,        |z| < 1/a

 baz / (z - a)2,       |z| > a

cos ak

(1-z cos a) / (1-2z cos a+z2), |z| < 1

z (z-cos a) / (z2-2z cos a+1),  |z| > 1

sin ak

z sin a / (1-2z cos a+z2),        |z| < 1

 z sin a / (z2-2z cos a+1),        |z| > 1

b exp(-ak)

b / (1-z exp(-a)),                 |z| < 1/exp(-a)

bz / (z-exp(-a)),               |z| > exp(-a)

bk exp(-ak)

bz exp(-a) / (1-z exp(-a))2, |z| < 1/exp(-a)

bz exp(-a) / (z-exp(-a))2, |z| > exp(-a)

            В таблице приведены преобразования как для символики z, так и для символики z-1 (по Гуревичу), которая иногда бывает удобней в некоторых математических операциях. Переход из одной символики в другую достаточно прост и выполняется заменой z в одной символике на 1/z  в другой.

8.3. СВОЙСТВА Z-ПРЕОБРАЗОВАНИЯ [2].

Важнейшим свойством z-преобразования является свойство его единственности. Любая последовательность s(k) однозначно определяется z-изображением в области его сходимости, и наоборот, однозначно восстанавливается по z-изображению.

Без углубления в теорию, можно  констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность: Если s(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов:  y(k) = x(k-n).

Y(z) =y(k) zk =x(k-n) zk =znx(k-n) zk-n = zn x(m) zm = zn X(z).

Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.

Преобразование свертки. При выполнении нерекурсивной цифровой фильтрации односторонними операторами фильтров:

s(k) =h(n) y(k-n),   k = 0, 1, 2, …

            Z-преобразование уравнения свертки:

S(z) =h(n) y(k-n) zk =h(n) zn y(k-n) zk-n =

=h(n) zny(k-n) zk-n = H(z) Y(z).

            Таким образом, свертка дискретных функций отображается произведением z-образов этих функций. Аналогично, для z-преобразования могут быть доказаны все известные теоремы о свойствах z-образов, что вполне естественно, т.к. при z=exp(-jw) эти свойства полностью эквивалентны свойствам спектров функций.

Разложение сигналов на блоки последовательной свертки. Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:

S(z) = a0(z-a1)(z-a2)...,

где а0- последний отсчет сигнала (коэффициент при старшей степени z).

Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:

sk= a0{-a1,1}*{-a2,1}*{-a3,1}* ...

   Пример.    sk = {1.4464,  -2.32,  3.37,  -3,  1}.      S(z) = z4-3z3+3.37z2-2.32z+1.4464.     a0 = 1.

   Корни полинома S(z):  a1 = 0.8+0.8j,  a2 = 0.8-0.8j,  a3 = 0.7+0.8j,  a4 = 0.7-0.8j,

   S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).

   Корни полинома представлены на z-плоскости на рис. 8.1.1.  Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки:     S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28). 

   При переходе в координатную область:     sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.

   Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).

            Дифференцирование. Если имеем s(k) « S(z), то z-образ функции ks(k) можно найти, продифференцировав S(z), что бывает полезно для вычисления обратного z-преобразования функций S(z) с полюсами высокого порядка:

ks(k) « z dX(z)/dz.

8.4. ОБРАТНОЕ Z-ПРЕОБРАЗОВАНИЕ [43]

Методы преобразования.  Обратное z-преобразование позволяет восстанавливать дискретную функцию по ее z-образу. Оно широко используется, например, при определении импульсных характеристик рекурсивных цифровых фильтров. В символической форме:

x(k) = TZ-1[X(z)].

            На практике X(z) в процессе расчетов обычно выражается через отношение двух многочленов от z:

X(z) = (b0 + b1 z + b2 z2 + …+ bN zN ) / (a0 + a1 z + a2 z2 + …+ aM zM ) =       (8.4.1)

= x(0) + x(1)z + x(2)z2 + …                                       (8.4.1')

Самые распространенные методы обратного преобразования из этой формы X(z):

·        Преобразование интегрированием по контуру (метод вычетов).

·        Метод разложения на элементарные дроби.

·        Метод разложения в степенной ряд.

Метод разложения в степенной ряд наиболее прост и пригоден для выполнения на компьютерах, но он не дает решения в аналитической форме. При задании большого числа точек обратного преобразования требуется также следить за возможным нарастанием числовых ошибок вследствие рекурсии его алгоритма.

Два первых метода позволяют получать результаты в аналитическом виде, но требуют вычисления полюсов функции X(z), что может представлять трудности при высоком порядке функции. При высоких порядках полюсов потребуется также дифференцирование соответствующих порядков.

Преобразование интегрированием по контуру относится к числу математически строгих методов. Оно выполняется интегрированием по произвольному замкнутому контуру C, расположенному в области сходимости и окружающему все особые точки (нули и полюсы) z-образа. Интегрирование удобнее выполнять над полюсами, расположенными внутри контура, включающего центр системы координат, т.е. в символике z-1. В этой символике мы и будем рассматривать данных параграф. Контурный интеграл обратного преобразования:

sk = (1/2pj) .                                        (8.4.2)

Согласно теореме Коши о вычетах, интеграл (8.4.2) равен сумме вычетов (Res) подынтегральной функции относительно всех полюсов этой функции, лежащих внутри контура интегрирования. Каждый вычет связан с определенным полюсом pk:

Res[F(z), pk] = [(z-pk) F(z)]   при z=pk.                   (8.4.3)

где F(z) = zk-1 S(z),  m – порядок полюса в точке pk. Для простого полюса:

Res[F(z), pk] = (z-pk) F(z) =  (z-pk) zk-1 S(z)  при z=pk.                 (8.4.3')

  Пример.   Z-образ функции:  X(z) = z2 / (z-0.5)(z-1)2.   

  x(k) = Res[F(z), p1] + Res[F(z), p2].    F(z) = zk-1 X(z) = zk+1 / (z-0.5)(z-1)2.

  Функция F(z) имеет простой полюс p1 = 0.5 и полюс второго порядка p2 = 1. 

  Res[F(z), 0.5] = (z-0.5) zk+1 / (z-0.5)(z-1)2 = zk+1 / (z-1)2 |z=0.5 = 0.5 (0.5)k / (0.5)2 = 2(0.5)k.

  Res[F(z), 1] =[(z-1)2 zk+1 / (z-0.5)(z-1)2] = [(z-0.5)(k+1)zk-zk+1] / (z-0.5)2 |z=1= 2(k-1).

  Результат: x(k) = 2[(k-1) + (0.5)k].

Преобразование разложением на дроби. В этом методе z-образ (8.4.1) раскладывается на рациональные простые дроби с последующим почленным обратным преобразованием с помощью таблицы. Наиболее просто это выполняется, если функция S(z) может быть разложена по степеням z в символике z-1, т.е. представить в следующем виде:

S(z) = s(0) + s(1) z-1+ s(2) z-2 + …

Соответственно, в выражении (8.4.1) отношение многочленов также должно быть в символике z-1. Если полюсы S(z) первого порядка и N = M, то (8.4.1) можно разложить на следующую сумму:

S(z) = B0 + C1/(1-p1z-1) + C2/(1-p2z-2) + … + CM/(1-pMz-M) =

B0 + C1z/(z-p1) + C2z/(z-p2) + … + CMz/(z-pM) = B0 +Ckz/(z-pk).         (8.4.4)

B0 = bN / aN.

где Сk – коэффициенты элементарных дробей, которые являются вычетами функции S(z).

Для вычисления коэффициентов Ck умножим левую и правую сторону выражения (8.4.4) на (z-pk)/z и положим z=pk, при этом  в правой части  за счет множителя (z-pk)=0 при z=pk обнуляются все члены суммы кроме члена с Ck данного полюса, а в левой остается произведение S(z)(z-pk)/z, что и позволяет вычислить значения Ck:

Ck = S(z)(z-pk)/z |z=pk                                           (8.4.5)

Если в (8.4.1) N < M, то значение B0 равно нулю. Если функция S(z) в точке z=pk имеет  полюс m-ного порядка, то коэффициент Ck заменяется суммой коэффициентов:

Di /(z-pk)i,                                                 (8.4.6)

Di = [ X(z) (z-pk)m/z],   при z=pk.                       (8.4.7)

  Пример.  Повторим пример преобразования данным способом z-образа функции

X(z) = z2 / (z-0.5)(z-1)2, использованного в предыдущем примере. Функция имеет простой полюс p1 = 0.5 и полюс второго порядка p2 = 1. 

  X(z) = Cz/(z-0.5) + D1z/(z-1) + D2z/(z-1)2.

  С = z/(z-1)2 = 0.5/(0.5-1)2 = 2.

  D1 = [(z-1)2 X(z)/z] = [z / (z-0.5)] |z=1= -2.

  D2 = (z-1)2 X(z)/z = z/(z-0.5) |z=1= 2.

  X(z) = 2z/(z-0.5) + D1z/(z-1) + D2z/(z-1)2.

  Обратное преобразование каждой простой дроби выполним по таблице 8.2.1.

  Результат: x(k) = 2(0.5)k -2 +2k = 2[(k-1) + (0.5)k]. Результат аналогичен методу вычетов.

            Если z-изображение имеет вид дробно-рациональной функции, то разложение на простые дроби с последующим применением таблицы соответствий обычно труда не представляет. Так, например:

S(z) = (b0 + b1 z-1 + b2 z-2) / (1 - a z-1) = b0/(1 - a z-1) + b1 z-1/(1 - a z-1) + b2 z-2/(1 - a z-1).

            По таблице соответствия:

X(z) = 1/(1-az-1) → x(k) = ak.

            Отсюда, с учетом линейности преобразования и свойства задержки:

x(k) = b0 ak + b1 ak-1 + b2 ak-2.

            При преобразовании функций со знаменателями более высоких порядков предварительно следует найти полюса функции. Например, для многочлена второго порядка с полюсами p1 и p2:

S(z) = 1/(1-a1 z-1+a2 z-2) = 1/[(1-p1 z-1)(1-p2 z-1).

            Представим S(z) в виде суммы дробей с неизвестными коэффициентами b1 и b2:

S(z) = b1/(1-p1 z-1)+b2/(1-p2 z-1) = (b1- b1 p2 z-1+b2-b2 p1 z-1)/[(1-p1 z-1)(1-p2 z-1).

            При равенстве знаменателей в этих двух выражениях должны быть равны и числители:

(b1 + b2) – (b1 p2+b2 p1)z-1 = 1,

а это обеспечивается равенством коэффициентов при одинаковых степенях z. Отсюда получаем систему уравнений:

b1 + b2 = 1.

b1 p2+b2 p1 = 0.

Решая эту систему уравнений, находим значения коэффициентов b1 и b2, подставляем коэффициенты в S(z), выраженное в виде суммы дробей, и по таблице соответствия переводим дроби во временные функции.

Метод степенных рядов. Выражение (8.4.1) можно разложить непосредственно в степенной ряд (8.4.1') путем деления в столбик, для чего числитель и знаменатель функции выражаются предварительно через нарастающий или уменьшающийся показатель степени z. Обратное z-преобразование степенного ряда очевидно.

  Пример нарастающей степени z.   X(z) = (1+2z+z2) / (1-z+0.4z2).

  1 + 2z + z2                     | 1 – z + 0.4z2

  1 –  z  + 0.4z2                   1 + 3z + 3.6z2 + 2.4z3 + 0.96z4 + … Ряд может быть бесконечным.

        3z + 0.6z2

        3z – 3z2  + 1.2z3

               3.6z2 1.2z3

               3.6z2 – 3.6z3 + 1.44z4

                          2.4z3 1.44z4 

                          2.4z3 – 2.4z4 + 0.96z5

                                     0.96z4 – 0.96z5

                                     0.96z4 – 0.96z5 + 0.384z6, и т.д.

  Обратное преобразование выполняется путем идентификации коэффициентов степеней при zk с k-отсчетами функции: x(k) = {1, 3, 3.6, 2.4, 0.96, …}.

  Пример уменьшающихся номеров степени z.   X(z) = (1+2z+z2) / (1-z+0.4z2) → (деление на zN числителя и знаменателя полинома) → (z-2+2z-1+1) / (z-2-z-1+0.4).

  z-2 + 2z-1 + 1                     | z-2z-1  + 0.4

  z-2z-1   + 0.4                    1 + 3z + 3.6z2 + 2.4z3 + 0.96z4 + … Результат тот же.

        3z-1 + 0.6

        3z-1 – 3  + 1.2z

                 3.6 1.2z

                 3.6 – 3.6z + 1.44z2

                         2.4z 1.44z2 

                         2.4z – 2.4z2 + 0.96z3

                                   0.96z2 – 0.96z3

                                   0.96z2 – 0.96z3 + 0.384z4, и т.д.

Метод деления полинома (8.4.1) можно выполнять рекурсивно:

x(0) = b0 / a0,

x(1) = (b1 – x(0) a1) / a0,

x(2) = (b2 – x(1) a1 – x(0) a2) / a0,



x(n) = (bn  (x(n-i) ai) /a0,   n = 1, 2, 3, …

8.5. ПРИМЕНЕНИЕ Z – ПРЕОБРАЗОВАНИЯ [43].

            Описание дискретных систем обработки сигналов с помощью нулей и полюсов - наиболее широкая область использования z-преобразования. Степенной полином передаточной функции системы вида (8.4.1) с нулями ni числителя и полюсами pj знаменателя всегда может быть представлен в виде произведения сомножителей:

H(z) = K(z-ni) /(z-pj),                                      (8.5.1)                                   

где К – коэффициент передачи (усиления) входного сигнала. Полюсы и нули H(z) могут быть действительными и комплексными, при этом для обеспечения действительных значений коэффициентов ai и bj в (8.4.1) комплексные коэффициенты должны быть представлены комплексно сопряженными парами.

Геометрическая оценка АЧХ и ФЧХ системы. Информацию, содержащуюся в H(z), удобно отображать в виде положения нулей (кружками) и полюсов (крестиками) на z-плоскости. Диаграмма нулей и полюсов наглядно отображает свойства системы и ее устойчивость. Для устойчивых систем все полюсы должны находиться за пределами единичной окружности (внутри окружности при символике z-1) или совпадать с нулями на единичной окружности. На положение нулей ограничений не существует.

По известной диаграмме нулей и полюсов может быть выполнена геометрическая оценка частотной характеристики системы. При z=exp(-jwDt) единичная окружность |z|=1 отображает частотную ось характеристики главного частотного диапазона от w = 0 (z=1) до 2p (z=-1). Каждой точке zs = exp(-jwsDt) может быть поставлен в соответствие вектор (zsni) на i-нуль, модуль которого Ui = |(zsni)| отображает расстояние от zs до i-нуля, а аргумент fi = arg(zsni) - фазовый угол из zs на i-нуль, а равно и вектор (zspj) на j-полюс с соответствующим расстоянием Vj = (zspj) и фазовым углом jj = arg(zspj). При этом амплитудная и фазовая характеристики системы могут быть оценены по выражениям при перемещении точки ws по единичной окружности:

|H(w)| = Ui /Vj,                                         (8.5.2)

arg(H(w)) = fi jj.                                      (8.5.3)

            По (8.5.2) нетрудно сделать заключение, что наибольшее влияние на изменение АЧХ по частоте оказывают нули и полюсы, расположенные ближе к единичной окружности. При расположении нуля непосредственно на окружности гармоника ws в этой точке полностью обнуляется. И, наоборот, при перемещении ws к полюсу, близкому к единичной окружности, происходит резкое нарастание коэффициента усиления системы.

            Вычисление частотной характеристики с помощью БПФ. Так как частотная характеристика дискретной системы – это Фурье образ ее импульсной характеристики, то для систем, описанных в общей форме (8.4.1), сначала производится разложение H(z) в степенной ряд (8.4.1'), над коэффициентами которого и выполняется БПФ. Гладкость (разрешение по частоте Df = 1/(NDt)) будет определяться количеством коэффициентов степенного ряда и при необходимости может увеличиваться дополнением ряда нулями.

            Альтернативный способ – вычисление БПФ непосредственно коэффициентов bn числителя и am знаменателя выражения (8.4.1) с последующим алгебраическим делением B(k)/A(k) результатов БПФ. Количество коэффициентов bn и an в (8.4.1) обычно невелико и для получения достаточно гладких частотных характеристик их продлевают нулями до необходимого значения N = 1/(DtDf).

            Анализ устойчивости систем выполняется для рекурсивных систем с бесконечной импульсной характеристикой  (БИХ-систем). Такие системы описываются либо непосредственно в виде разностного уравнения, либо передаточной функцией в виде z-образа импульсной характеристики или разностного уравнения. Общее условие устойчивости импульсной характеристики системы:

|h(k)| < ∞.

            Для рекурсивных систем начальный индекс суммирования равен нулю. Практически это означает, что любой ограниченный входной сигнал в устойчивой системе порождает ограниченный выходной сигнал.

            В устойчивой системе все полюсы передаточной функции H(z) должны находиться за границами единичной окружности z=exp(-jwDt) (внутри окружности при символике z-1). Система с полюсом на единичной окружности также считается неустойчивой (потенциально неустойчивой), даже если во входном сигнале нет гармоники с частотой, соответствующей положению данного полюса на окружности. Это определяется тем, что в соответствии с (8.5.1) коэффициент усиления системы в точке полюса равен бесконечности и любой бесконечно малый сигнал на этой частоте даст бесконечно большой сигнал на выходе. Естественно, что для практических систем понятия бесконечности не существует и можно пытаться принять определенные меры для исключения таких критических частот. Так, например, в интегрирующих системах полюс находится на нулевой частоте и из входного сигнала можно исключить постоянную составляющую, но при этом изменяется и характер интегрирования (только динамические составляющие входного сигнала). Следует также учитывать, что во входных сигналах обычно всегда присутствует определенный статистический шум, наблюдаются скачки, присутствует шум квантования и т.п. эффекты с непрерывным частотным спектром, которые могут приводить к огромным ошибкам при обработке данных в потенциально неустойчивых системах. Практически осуществимый способ повышения устойчивости систем – компенсировать полюсы на окружности нулями в этих же точках, но это может приводить к существенному изменению частотной характеристики системы.

            Оценку устойчивости рекурсивной  системы можно проводить и по виду ее импульсной характеристики (вычислением обратного z-преобразования или подачей импульса Кронекера на вход (алгоритм) системы). Если значения коэффициентов увеличиваются по мере роста номеров – система неустойчива. Если они очень медленно уменьшаются (медленно стремятся к нулю) – система устойчива минимально, имеет большое время установления рабочего режима, при определенных условиях может давать большие погрешности в обрабатываемых данных.

            Связь разностных уравнений и передаточных функций рекурсивных систем. Стандартная запись разностного уравнения системы (связи входного воздействия x(k) и выходного сигнала y(k) при известных постоянных параметрах нерекурсивной bn и рекурсивной am трансформации сигналов):

y(k) = bn x(k-n) -am y(k-m).                                (8.5.4) 

            От разностного уравнения с использованием свойства задержки z-преобразования

bn x(k) « bn X(z),

bn x(k-n) « bn zn X(z),

нетрудно перейти к z-образу разностного уравнения системы:

Y(z) = bn X(z) zn  -am Y(z) zm.                                 (8.5.5) 

            Отсюда, передаточная функция системы:

Y(z) (1+am zm) =bn X(z) zn.

H(z) = Y(z) / X(z) = bn zn /(1+am zm).                            (8.5.6)

            И, наоборот, при приведении выражения (8.4.1) к виду (8.5.6) (нормировкой на a0) можно без дальнейших преобразований переходить к выражению (8.5.4).

  Пример.   Передаточная функция:  H(z) = 2(1-z) / (2+z). Определить алгоритм вычислений.  

  H(z) = Y(z)/X(z) = (1-z) / (1+0.5z).

  Y(z) + 0.5 z Y(z) = X(z) – z X(z). 

  y(k) + 0.5 y(k-1) = x(k) – x(k-1)

  Результат: y(k) = x(k) – x(k-1) - 0.5 y(k-1)

 

литература

2. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.- 448 с. (с. 388-391)

4. Бендат Дж., Пирсол А.  Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

12. Канасевич Э.Р.  Анализ временных последовательностей в геофизике. - М.: Недра, 1985.- 300 с.

22. Рапопорт М.Б.  Вычислительная техника в полевой геофизике: Учебник для вузов. - М.: Недра, 1993.- 350 с.

42. Новиков Л.В. Основы вейвлет-анализа сигналов. Учебное пособие. СПб, ИАнП РАН, 1999.

43. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с. [kgl]

 

 

все лекции
содержание


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации