Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n116.htm

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n116.htm


Тема 5.  ФИЛЬТРАЦИЯ СЛУЧАЙНЫХ СИГНАЛОВ.

Как бы ни кичились люди величием своих знаний, последние часто бывают следствием не великих замыслов, а простой случайности.

Франсуа де Ларошфуко. Французский писатель моралист. XVII в.

Но чтобы извлекать из мусора случайностей, которые на тебя сваливаются, что-нибудь полезное, не говоря уже о великом, нужно иметь в своем черепе хорошо обученную и настроенную фильтровальную систему.

Евгений Кучурин. Геофизик Уральской школы. XX в.

Содержание

1. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.

2. Спектры мощности случайных сигналов.  Спектр мощности выходного сигнала. Средняя мощность выходного сигнала.  Дисперсия выходного сигнала. Взаимный спектр мощности входного и выходного сигналов. Усиление шумов. Функция когерентности.

Введение

            Если сигнал на входе фильтра является детерминированным, то его соотношение с выходным сигналом однозначно определяется импульсным откликом фильтра. Таким же однозначным является соотношение входа - выхода и для случайных сигналов, однако в силу природы последних аналитическое представление как входного сигнала, так и отклика системы, не представляется возможным. Для описания реакции фильтра на случайный входной сигнал используется статистический подход.

5.1. Фильтрация случайных сигналов   [4, 15].

            Если параметры случайного входного сигнала специально не оговариваются, то по умолчанию принимается, что на вход фильтра поступает реализация случайного стационарного процесса x(kDt) с нулевым средним, которая вызывает сигнал y(kDt) на выходе фильтра. Значение Dt, как обычно, принимаем равным 1.

            Сохранение природы сигнала. Допустим, что фильтр имеет импульсный отклик h(n) = exp(-a·n), n ³ 0. Зададим на входе фильтра стационарный квазидетерминированный случайный сигнал, который не обладает свойством эргодичности, но имеет все свойства случайного сигнала, и может быть описан в явной математической форме:

5.1.1.gif

Рис. 5.1.1. Фильтрация квазидетерминированного сигнала.

x(k) = A + cos(2k+j),

где A и j - взаимно независимые случайные величины, причем значение j равномерно распределено в интервале [0, 2p]. При этом выходной сигнал определится выражением:

y(k) = h(n) x(k-n) ºh(n) x(k-n)

y(k) = A/3 + [3 cos(2k+j) + 2 sin(2k+j)]/13.

            Из этого выражения следует, что выходной сигнал фильтра также является случайным и содержит те же самые случайные параметры, что и входной сигнал, а, следовательно, для него существуют определенные статистические характеристики. Пример реализации квазидетерминированного случайного сигнала и его фильтрации аналогом сглаживающего RC-фильтра приведен на рис. 5.1.1.

            Математическое ожидание (индекс операции – М) произвольного входного случайного стационарного сигнала x(k) на выходе фильтра определится выражением:

                                = М{y(k)}= M{h(n) x(k-n)}=M{x(k-n)}h(n) =

=  h(n) =Кпс.                                           (5.1.1)

            Отсюда следует, что математическое ожидание выходных сигналов фильтра равно математическому ожиданию входных сигналов, умноженному на коэффициент усиления фильтром постоянной составляющей. При Кпс = 1 среднее значение выходных сигналов не изменяется и равно среднему значению входных сигналов. Если фильтр не пропускает постоянную составляющую сигналов (сумма коэффициентов импульсного отклика фильтра равна нулю), то случайный выходной сигнал всегда будет иметь нулевое математическое ожидание.

Корреляционные соотношения. Для нецентрированных входных сигналов x(k) размером (0-К) автокорреляционная функция (АКФ), а равно и функция автоковариации Kx(n) (ФАК) для  центрированных случайных сигналов, вычисляется по формуле:

Rx(n) = [1/(K+1-n)]x(k) x(k+n).                              (5.1.2)

Формула применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

Rs(n) = sk×sk+n,   sk-n = 0 при k+n > K,                       (5.1.3)

т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (5.1.2). Разницу между нормировками по формулам (5.1.2) и (5.1.3) можно наглядно видеть на рис. 5.1.2.

5.1.5.bmp

Рис. 5.1.2.

Формулу (5.1.3) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:

Rs(n) = M{sk sk+n} @ .                              (5.1.4)

 

По аналогичной формуле может быть вычислена и АКФ выходных сигналов. Для произведения выходных сигналов y(k) и y(k+n), образующих функцию автокорреляции выходных сигналов, можно также записать (без дополнительных множителей):

y(k) y(k+n) = h(i)h(j) x(k-i)x(k+n-j).

            Если взять математические ожидания от обеих частей этого равенства, то, с учетом соотношения в правой части под знаками сумм

M{x(k-i) x(k+n-j)} = -Rx(k-i-k-n+j) = Rx(n+i-j),

получим:

Ry(n) =h(i)h(j) Rx(n+i-j) º Rx(n) ③ h(n+i) ③ h(n-j).               (5.1.5)

            Таким образом, функция автокорреляции выходного сигнала равна АКФ входного сигнала, свернутой дважды, в прямом и обратном направлении, с импульсным откликом фильтра, что сохраняет четность АКФ выходного сигнала. Для центрированных процессов аналогичное заключение действительно и для ковариационных функций. На рис. 5.1.3 приведен пример нормированных АКФ входной и выходной случайных последовательностей при фильтрации RC-фильтром, форма импульсного отклика которого также приведена на рисунке.

d01-08

Рис. 5.1.3. Функции корреляционных коэффициентов.

            Заметим, что для свертки импульсных откликов, производя замену n-j = m, мы имеем равенство:

h(n+i) ③ h(n-j) = h(m+i+j) ③ h(m) = h(m) ③ h(m+p) = Rh(m),

где Rh(m) - функция корреляции импульсного отклика фильтра. Отсюда:

Ry(n) = Rx(n) Rh(m).                                         (5.1.5')

            Это означает появление в случайном сигнале на выходе фильтра определенной корреляционной зависимости, определяемой инерционностью фильтра. Эффективный интервал tk корреляции данных в сигнале тем меньше, чем выше верхняя граничная частота wв его спектра (по уровню 0.5):

tк = p/wв =1/2fв.

            Оценка интервала корреляции для конечных (непериодических) функций, как правило, производится непосредственно по функциям автокорреляции R(n):

tk = 2Sn|R(n)/R(0)| - 1,                                       (5.1.6)

где значение n ограничивается величиной 3-5 интервалов спада центрального пика до величины порядка 0.1×R(0). Без такого ограничения за счет суммирования модуля флюктуаций, не несущих информации, значение tk завышается относительно расчетного по спектральной характеристике сигнала.  Значение tk может определяться также непосредственно по координате пересечения нулевой линии функцией автоковариации K(n). Дальше обычно начинаются статистические флюктуации значения K(n) около нулевой линии, вызванные ограниченностью выборки. 

5-1-3.gif

Рис. 5.1.4. Функции корреляционных

коэффициентов большой выборки.

            Функция Rx(n) случайных статистически независимых отсчетов близка к d-функции, свертка которой с Rh(m) приведет к формированию на выходе выходного сигнала, нормированная форма АКФ которого будет стремиться к форме Rh(m). При достаточно большой выборке случайных отсчетов входного сигнала это означает практически полное повторение функцией Ry(n) формы корреляционной функции импульсного отклика, как это можно видеть на рис. 5.1.4, который отличается от рис. 5.1.3 только количеством выборки К=10000. Соответственно, интервал корреляции выходных сигналов для случайной входной последовательности можно определять непосредственно по функции (5.1.6) непосредственно импульсного отклика фильтра.

            Для взаимной корреляционной функции (ВКФ) Rxy входного и выходного сигналов соответственно имеем:

x(k) ③ y(k+n) =h(i) x(k) y(k+n-i).

Rxy(n) =h(i) Rx(n-i) º  h(i) ③ Rx(n-i).                           (5.1.7)

т.е. функция взаимной корреляции входного и выходного сигналов равна свертке АКФ входного сигнала с функцией импульсного отклика фильтра. Заключение действительно и для функций ковариации.

            Другая взаимно корреляционная функция Ryx может быть получена из соотношения:

Ryx(n) = Rxy(-n) º h(i) ③ Rx(n+i).                                (5.1.7')

            Отметим, что для статистически независимых случайных величин при одностороннем импульсном отклике (h(i) = 0 при i<0) функция Rxy(n) также является односторонней, и равна 0 при n<0, а функция Ryx соответственно равна 0 при n>0.

5.2. СПЕКТРЫ МОЩНОСТИ СЛУЧАЙНЫХ СИГНАЛОВ   [4, 15].

Спектр мощности выходного сигнала. Если на вход фильтра с импульсным откликом h(k) ó H(f) поступает случайный стационарный эргодический сигнал x(k) ó XТ(f), имеющий на интервале Т функцию автокорреляции Rx(n) и спектр мощности Wx(f), то на выходе фильтра регистрируется стационарный эргодический сигнал y(k) ó YT(f) = XТ(f)H(f). Соответственно, энергетический спектр выходного сигнала на том же интервале:

|YT(f)|2 = |XT(f)|2 |H(f)|2.                                    (5.2.1)

Оценка спектра мощности (спектральной плотности энергии):

Wy(f) » (1/T) |XТ(f)|2 |H(f)|2= Wx(f) |H(f)|2.                    (5.2.2)

Спектр мощности сигнала на выходе фильтра равен спектру мощности входного сигнала, умноженному на квадрат модуля частотной характеристики фильтра. С учетом четности корреляционных функций спектр мощности выходного сигнала также является четной действительной функцией и не имеет фазовой характеристики процесса.

Спектр мощности сигнала и его функция автокорреляции связаны преобразованием Фурье:

Ry(n) ó |Y(w)|2 = Wy(w).

Средняя мощность выходного сигнала определяется с использованием формулы (5.2.1):

Wy = Ry(0) =Wx(f) |H(f)|2 df º Rx(0)h2(n) = Wxh2(n).          (5.2.3)

Если значение мощности входного сигнала неизвестно, то вычисляется непосредственно средний квадрат значений выходного сигнала:

= Ry(0) º h2(n) ºWx(f) |H(f)|2 df.

            Вывод: средняя мощность выходного сигнала равна средней мощности входного сигнала, умноженной на сумму квадратов коэффициентов импульсного отклика фильтра.

Дисперсия выходного сигнала. Для центрированных случайных сигналов средняя мощность равна дисперсии сигналов. Для нецентрированных выходных сигналов:

sy2 = - 2 º (-2)h2(n).                                    (5.2.4)

Взаимный спектр мощности входного и выходного сигнала:

Wxy(f) » (1/T)XT(f)YT(f) = (1/T)|XT(f)|2 H(f) = Wx(f)H(f).                  (5.2.5)

Осуществляя преобразование Фурье левой и правой части выражения, получаем:

Rxy(n) = Rx(n) h(n),                                            (5.2.6)

что повторяет формулу (5.1.5).

Усиление шумов. Критерием качества при использовании любого метода фильтрации информации можно считать выполнение целевого назначения с минимальным усилением шумов (максимальным их подавлением). Обозначим через e(k) аддитивный шум во входном сигнале с математическим ожиданием M{e(k)}= 0 и дисперсией s2. Значения e(k) статистически независимы. С учетом помехи во входном сигнале значение сигнала на выходе:

y(k) = Sn h(n)[x(k-n)+e(k-n)].

Математическое ожидание значений выходного сигнала:

M{y(k)}= Sn h(n)[x(k-n)+M{e(k-n)]}= Sn h(n) x(k-n).

Вычислим дисперсию распределения отсчетов выходного сигнала:

D{y(k)}= M{[Sn h(n)[x(k-n)+e(k-n)]-M{y(k)}]2}=

= M{[Sn h(n) e(k-n)]2}= Sn h2(n) M{e2(k-n)}= s2 Sn h2(n).           (5.2.7)

Отсюда следует, что сумма квадратов значений импульсного отклика цифрового фильтра представляет собой коэффициент усиления шумов, равномерно распределенных в главном частотном диапазоне фильтра. Это полностью соответствует прямому использованию выражения (5.2.7) при Wx(f) = s2:

sy2 = s2 |H(f)|2 df  s2h2(n).                          (5.2.7')

            Таким образом, коэффициент усиления фильтром дисперсии статистически распределенных шумов при расчете по импульсному отклику:

Kq =Sn h2(n).                                                (5.2.8)

            По дискретной частотной функции фильтра:

Kq =  [1/(N+1)] Sn Hn2.                                       (5.2.8')

  Пример.   Сглаживающий фильтр:  y(k) = 0.2x(k-n).  

  Коэффициент усиления шумов:  5 (0,22) = 0,2.   Дисперсия шумов уменьшается в 1/0.2 = 5 раз.

  Выполните расчет коэффициента усиления шумов для пятиточечного фильтра МНК. 

  Контрольный ответ: 0.486.

            Функция когерентности входного и выходного сигналов фильтра оценивается по формуле:

gxy2(f) = |Wxy(f)|2/[Wx(f)×Wy(f)].                                (5.2.9)

            Если функции Wx(f) и Wy(f) отличны от нуля и не содержат дельта-функций, то для всех частот f значения функции когерентности заключены в интервале:

0  £ gxy2(f) £ 1.

            Для исключения дельта-функции на нулевой частоте (постоянная составляющая сигнала) определение функции когерентности производится по центрированным сигналам. Для фильтров с постоянными параметрами функция когерентности равна 1, в чем нетрудно убедиться, если в формулу (5.2.9) подставить выражения Wxy и Wy, определенные через Wx. Для совершенно не связанных сигналов функция когерентности равна нулю. Промежуточные между 0 и 1 значения могут соответствовать трем ситуациям:

            1. В сигналах (или в одном из них) присутствует внешний шум (например, шум квантования при ограничении по разрядности).

            2. Фильтр не является строго линейным. Это может наблюдаться, например, при определенном ограничении по разрядности вычислений, при накоплении ошибки в рекурсивных системах и т.п.

            3. Выходной сигнал y(t) помимо x(t) зависит еще от каких-то входных или внутренних системных процессов.

            Величина 1-gxy2(f) задает долю среднего квадрата сигнала y(t) на частоте f, не связанную с сигналом x(t).

            Использование функций когерентности в практических методах анализа случайных данных подробно рассмотрено в работе /4/.

литература

4. Бендат Дж., Пирсол А.  Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

15. Купер Дж., Макгиллем А.  Вероятностные методы анализа сигналов и систем. – М.: Мир, 1989. – 376 с. [kgl]

 

 

 

все лекции
содержание


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации