Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n115.htm

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n115.htm


Тема 4.  РАЗНОСТНЫЕ ФИЛЬТРЫ И ФИЛЬТРЫ ИНТЕГРИРОВАНИЯ.

Человечество так старо! Всегда приходится идти по чьим-то стопам.

 А. Додэ.

Но люди амбициозны, и всегда пытаются оставить свой след. Следов этих так много, что трудно сообразить, какой из них прямой, простой и годится на все случай жизни. А может таких вообще нет?

 Лариса Ратушная. Уральский геофизик, XX в.

 

Содержание

Введение.

1. Разностные операторы. Выделение в сигналах шумов. Восстановление утраченных или пропущенных данных. Аппроксимация производных.

2. Интегрирование данных. Алгоритмы интегрирования по формулам трапеций, прямоугольников, Симпсона.

Введение

Основной инструмент проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций синусов и косинусов. По-существу, спектральная характеристика цифрового фильтра – это тонкая внутренняя структура системы, его однозначный функциональный паспорт направленного изменения частотного состава данных, полностью определяющий сущность преобразования фильтром входных данных. 

Рассмотрим примеры синтеза и частотного анализа фильтров применительно к известным способам дифференцирования и интегрирования данных.

4.1. Разностные операторы   /24/.

Рассмотрим примеры частотного подхода при анализе разностных операторов.

Разностный оператор 1-го порядка имеет вид:

Dsk = sk+1-sk.

Последовательное n-кратное применение оператора записывается в виде оператора n-го порядка:

Dn(sk) = D[Dn-1(sk)] = Dsk Dn-1(sk)                              (4.1.1)

k

sk

D(sk)

D2(sk)

D3(sk)

D4(sk)

D5(sk)

D6(sk)

-7

-6

-5

-4

-3

-2

-1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

-1

0

0

0

0

0

0

1

-2

1

0

0

0

0

0

1

-3

3

-1

0

0

0

0

1

-4

6

-4

1

0

0

0

1

-5

10

-10

5

-1

0

0

1

-6

15

-20

15

-6

1

0

Кq

 

2

6

20

70

252

924

Выходные значения импульсной реакции разностных операторов на единичный импульсный сигнал Кронекера приведены в таблице. Ряды последовательных разностей содержат знакопеременные биномиальные коэффициенты. В представленной форме разностные операторы являются каузальными фазосдвигающими (односторонними) фильтрами, но нетрудно заметить, что операторы четных степеней могут быть переведены в симметричную форму сдвигом влево на половину окна оператора.

В последней строке таблицы приводятся коэффициенты усиления дисперсии шумов, значение которых резко нарастает по мере увеличения порядка оператора. Это позволяет использовать разностные операторы с порядком выше 1 для определения местоположения статистически распределенных шумов в массивах данных. Особенно наглядно эту возможность можно видеть на частотных характеристиках операторов.

Подставляя сигнал s(k) = exp(jwk) в (4.1.1) и упрощая, получаем:

Dns(k) = (jn) exp(jwn/2) [2 sin(w/2)]n  exp(jwk).

H(w) = (jn) exp(jwn/2) [2 sin(w /2)]n                                                     (4.1.2)

Так как модуль первых двух множителей в выражении (4.1.2) равен 1, зависимость коэффициента передачи разностного оператора от частоты определяется вторым сомножителем (2 sin(w/2))n и представлена на рисунке 4.1.1.



Рис. 4.1.1. Разностные фильтры.

Выделение в сигналах шумов. Как следует из рисунка, разностные операторы подавляют постоянную составляющую сигнала и его гармоники в первой трети интервала Найквиста и увеличивают высокочастотные составляющие сигнала в остальной части интервала тем больше, чем больше порядок оператора. Как правило, эту часть главного интервала спектра сигналов занимают высокочастотные статистические шумы.

Шумы при анализе данных также могут представлять собой определенную информацию, например, по стабильности условий измерений и по влиянию на измерения внешних дестабилизирующих факторов. На рис. 4.1.2 приведен пример выделения интервалов интенсивных шумов в данных акустического каротажа, что может свидетельствовать о сильной трещиноватости пород на этих интервалах. Такая информация относится уже не шумовой, а к весьма полезной информации при поисках и разведке нефти, газа и воды.

d02-10

Рис. 4.1.2.

Восстановление утраченных данных. Разностные операторы имеют одну особенность: оператор n+1 порядка аннулирует полином степени n, т.е. свертка оператора порядка n+1 с полиномом n-ой степени дает нулевые значения:  Dn+1 Pn(k) = 0. Эту особенность можно использовать для создания очень простых и достаточно надежных операторов восстановления в массивах пропущенных и утраченных значений или для замены аннулированных при обработке величин (например, явных выбросов).

  Пример.    P2(k) = xk = 1+2k-k2,   k = 0,1,2,...  xk = 1,2,1,-2,-7,-14,-23,-34,...   yk = xk D3=0,0,0,0,...

Если считать, что отрезок данных, содержащий пропуск, является многочленом некоторой степени, то свертка данных с разностным оператором следующего порядка должна быть равна нулю. Так, при аппроксимации данных многочленом третьей степени для любой точки массива должно выполняться равенство:

D4③(sk) = sk-2-4sk-1+6sk-4sk+1+sk+2 = 0.

Интерполяционный фильтр восстановления утраченной центральной точки данных:

sk = (-sk-2+4sk-1+4sk+1-sk+2)/6.                                    (4.1.3)

Соответственно, оператор фильтра восстановления данных h(n) = (-1,4,0,4,-1)/6. Коэффициент усиления шумов s2 = 17/18 = 0.944.

  Пример.   Фактический отрезок массива данных:  xk = {3,6,8,8,7,5,3,1}.

  Допустим, что на отрезке был зарегистрирован явный выброс:  xk = {3,6,8,208,7,5,3,1}.

  Отсчет с выбросом аннулирован.  Замена отсчета: x3 = (-x1+4x2+4x4-x5)/6= (-6+32+28-5)/6 » 8.17.

  В массиве утрачен 5-й отсчет.  Восстановление: x4 = (-x2+4x3+4x5-x6)/6 = (-8+32+20-3)/6 » 6.83.



Рис. 4.1.3. Разностные фильтры.

Принимая в (4.1.3) k = 0 и подставляя сигнал sk = exp(jwk), получаем частотную характеристику, в данном случае - фильтра восстановления данных 4-го порядка:

H(w) = (4 cos w - cos 2w)/3.

Вид частотной характеристики для фильтров восстановления пропущенных данных 4-го и 6-го порядков приведен на рис. 4.1.3. Графики наглядно показывают, что применение разностных интерполяционных фильтров восстановления данных возможно только для сигналов, высокочастотные и шумовые составляющие которых минимум в три раза меньше частоты Найквиста. Интерполяционные фильтры выше 4-го порядка применять не рекомендуется, т.к. они имеют коэффициент усиления шумов более 1.

На рис. 4.1.4 – 4.1.6 приведены примеры восстановления утраченных данных во входных сигналах оператором 3-го порядка и спектры сигналов в сопоставлении с передаточной функцией оператора восстановления данных.

d02-11   d02-12

Рис. 4.1.4. Восстановление незашумленных данных.                                      Рис.4.1.5. Спектры.

d02-13

                                                    Рис. 4.1.6. Восстановление зашумленных данных.

            В сигналах, представленных на рисунках, утрачен каждый 10-ый отсчет (например, при передаче данных) при сохранении тактовой частоты нумерации данных. Учитывая, что все значения входных сигналов положительны, индикатором пропуска данных для работы оператора служат нулевые значения. В любых других случаях для оператора восстановления данных необходимо предусматривать специальный маркер (например, заменять аннулированные данные или выбросы определенным большим или малым значением отсчетов).

d02-14

Рис. 4.1.7. Погрешности восстановления сигналов.

Как следует из рис. 4.1.5, спектр полезного сигнала полностью находится в зоне единичного коэффициента частотной характеристики оператора, и восстановление данных выполняется практически без погрешности (рис. 4.1.4). При наложении на сигнал статистически распределенных шумов (рис. 4.1.6) погрешность восстановления данных увеличивается, но для информационной части полного сигнала она, как и во входных данных, не превышает среднеквадратического значения (стандарта) флюктуаций шума. Об этом свидетельствует рис. 4.1.7, полученный для сигналов на рис. 4.1.6 по данным математического моделирования при разных значениях стандарта шума (выборки по 10 точкам восстановления).

Аппроксимация производных - вторая большая область применения разностных операторов. Оценки первой, второй и третьей производной можно производить по простейшим формулам дифференцирования:

(sn)' = (sn+1-sn-1)/2Dt.                               h1 = {-0.5, 0, 0.5}.                      (4.1.4)

(sn)'' = (sn+1-2sn+sn-1)/Dt.                          h2 = {1, -2, 1}.

(sn)''' = (-sn+2+2sn+1-2sn-1+sn-2)/2Dt.          h3 = {0.5, -1, 0, 1, -0.5}.

Оператор первой производной является нечетной функцией и имеет мнимый спектр. Если принять s(t) = exp(jwt), то истинное значение первой производной должно быть равно: s'(t) = jw exp(jwt). Передаточная функция H(w) = jw. Оценка первой производной в точке n = 0 по разностному оператору при Dt = 1:  s'(0) = (exp(jw)-exp(-jw))/2 = j sin w = H1(w). Отношение расчетного значения к истинному на той же точке:  K1(w) = sin(w)/w. Графики функций в правой половине главного диапазона приведены на рис. 4.1.8.

d02-15

Рис. 4.1.8.

Как следует из приведенных выражений и графиков, значение К(w) равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных. Однако при обработке практических данных последний фактор может играть и положительную роль, если сигнал низкочастотный (не более 1/3 главного диапазона) и зарегистрирован на уровне высокочастотных шумов. Любое дифференцирование поднимает в спектре сигнала долю его высокочастотных составляющих. Коэффициент усиления дисперсии шумов разностным оператором дифференцирования непосредственно по его спектру в главном диапазоне:

Kq = (1/p)(sin w)2 dw = 0.5.

            При точном дифференцировании по всему главному диапазону:

Kq = (1/p)w2 dw = 3.29

            Следовательно, разностный оператор имеет практически в шесть раз меньший коэффициент усиления дисперсии шумов, чем полный по главному диапазону точный оператор дифференцирования.

            На рис. 4.1.9 показан пример дифференцирования гармоники с частотой 0.1 частоты Найквиста (показана пунктиром) и этой же гармоники с наложенными шумами (сплошная тонкая кривая).

d02-16

Рис. 4.1.9. Пример дифференцирования (входные сигналы – вверху, выходные – внизу).

Оператор второй производной относится к типу четных функций. Частотная функция оператора: H2(w) = -2(1-cos w). Собственное значение операции H(w) = -w2. Отношение фактического значения к собственному

K2(w) = [sin(w/2)/(w/2)]2,

и также равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных, хотя и меньшие по относительным значениям, чем оператор первой производной. Частотные графики функций приведены на рис. 4.1.10. Коэффициент усиления дисперсии шумов оператором второй производной равен 6 при собственном значении дифференцирования, равном 19.5. Эти значения показывают, что операция двойного дифференцирования может применяться только для данных, достаточно хорошо очищенных от шумов, с основной энергией сигнала в первой трети интервала Найквиста.

d02-17

Рис. 4.1.10. Частотные функции 2-ой производной.

В принципе, вторую производную можно получать и последовательным двойным дифференцированием данных оператором первой производной. Однако для таких простых операторов эти две операции не тождественны. Оператор последовательного двойного дифференцирования можно получить сверткой оператора первой производной с самим собой:

2h1 = h1 h1 = {0.25, 0, -0.5, 0, 0.25},

и имеет коэффициент усиления дисперсии шумов всего 0.375. Частотная характеристика оператора:

2H1(w) = -0.5[1-cos(2w)].

            Графики 2H1(w) и коэффициента соответствия 2K1(w) приведены пунктиром на рис. 4.1.10. Из их сопоставления с графиками второй производной можно видеть, что последовательное двойное дифференцирование возможно только для данных, спектральный состав которых занимает не более пятой начальной части главного диапазона, и по точности хуже оператора второй производной.

d02-18

Рис. 4.1.11. Вторая производная гармоники с частотой w=0.2p при Dt=1

(пунктир – двойное  последовательное дифференцирование)

Пример применения двух операторов второй производной приведен на рис. 4.1.11.

Попутно заметим, что частота Найквиста главного диапазона обратно пропорциональна интервалу Dt дискретизации данных (wN = p/Dt), а, следовательно, интервал дискретизации данных для корректного использования простых операторов дифференцирования должен быть в 3-5 раз меньше оптимального для сигналов с известными предельными частотами спектрального состава.

Частотные функции для третьей производной предлагается получить самостоятельно.

4.2. Интегрирование данных   /24/

Интегрирование сигналов реализуется рекурсивными цифровыми фильтрами. Рассмотрим примеры анализа интегрирующих операторов.

Как известно, для точной операции интегрирования финитных сигналов в общем случае действительно преобразование:

s(t) dt « (1/jw) S(w).

Это выражение в правой части имеет особую точку при w = 0 и, соответственно, весовой дельта-импульс на нулевой частоте, пропорциональный постоянной составляющей сигнала.  Оператор интегрирования в частотной области (1/jw) при w > 1 ослабляет в амплитудном спектре высокие частоты, а при 0 < w <1 усиливает низкие. Фазовый спектр сигнала смещается на -900 для положительных частот и на 900 для отрицательных. 

Наиболее простыми и распространенными на практике алгоритмами интегрирования являются цифровые аналоги формул трапеций, прямоугольников и Симпсона.

Алгоритм интегрирования по формуле трапеций при нулевых начальных условиях:

yk+1 = yk+(sk+1+sk)/2.                                        (4.2.1)

4.2.1.gif

Рис. 4.2.1. Частотные характеристики фильтров

Принимая sk = exp(jwt) и yk = H(w) exp(jwt), подставляем сигналы в (4.2.1) при tk = kDt, Dt = 1 и решаем относительно H(w). Получаем:

H(w) = cos(w/2)/[2j sin(w/2)].

Частотная характеристика фильтра, а также фильтров интегрирования по другим формулам, приведена на рис. 4.2.1. В связи с накоплением результатов по всему предыдущему циклу суммирования и большим диапазоном значений модуля АЧХ характеристики фильтра более удобными, представительными и информационными являются частотные функции коэффициентов соответствия фактического интегрирования истинному:

K(w) = H(w)exp(jwt)/[(1/jw)exp(jwt)].

K(w) = cos(w/2)[(w/2)/sin(w/2)].                                 (4.2.2)

Графики коэффициентов соответствия всех фильтров интегрирования приведены на рис. 4.2.2

Оператор интегрирования по формуле прямоугольников (интерполяционное среднеточечное):

yk+1 = yk+sk+1/2.                                              (4.2.3)

После аналогичных подстановок сигнала и преобразований получаем:

K(w) = (w/2)/sin(w/2).

При численном интегрировании по формуле Симпсона уравнение фильтра имеет вид:

yk+1 = yk-1+(sk+1+4sk+sk-1)/6.                                     (4.2.4)

Частотный анализ фильтра проведите самостоятельно. Контроль:

K(w) = (2+cos w)/[3 sin(w)/w].

d02-19

Рис. 4.2.2. Коэффициенты соответствия.

Наиболее простые формулы цифрового интегрирования (трапеций и прямоугольников) ведут себя различным образом в главном частотном диапазоне. Формула прямоугольников завышает результаты на высоких частотах, а формула трапеций - занижает. Эти особенности легко объяснимы. Для одиночной гармоники площадь трапеции по двум последовательным отсчетам всегда меньше, чем площадь с выпуклой дугой гармоники между этими отсчетами, и разница тем больше, чем больше частота. В пределе, для гармоники с  частотой Найквиста, отсчеты соответствуют знакочередующемуся ряду (типа 1, -1, 1, -1, ... или любые другие значения в зависимости от амплитуды и начального фазового угла) и при нулевых начальных условиях суммирование двух последовательных отсчетов в формуле (4.2.1) будет давать 0 и накопления результатов не происходит. Интегрирование по площади прямоугольников с отчетом высоты по центральной точке между двумя отсчетами всегда ведет к завышению площади прямоугольника относительно площади, ограниченной выпуклой дугой гармоники.

Формула Симпсона отличается от формул трапеций и прямоугольников более высокой степенью касания единичного значения, что обеспечивает более высокую точность интегрирования в первой половине главного диапазона. Однако на высоких частотах погрешность начинает резко нарастать вплоть до выхода на бесконечность на конце диапазона (полюс в знаменателе передаточной функции рекурсивного фильтра на частоте Найквиста).

Эти особенности интегрирования следует учитывать при обработке данных сложного спектрального состава. Пример интегрирования сигнала и изменения его спектра приведен на рис. 4.2.3.

4

Рис. 4.2.3.

литература

                24. Хемминг Р.В.  Цифровые фильтры. – М.: Недра, 1987. – 221 с. [kgl]

 

 

 

все лекции
содержание


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации