Учебно-методический комплекс по дисциплине Цифровая обработка сигналов - файл n114.htm

приобрести
Учебно-методический комплекс по дисциплине Цифровая обработка сигналов
скачать (11114.3 kb.)
Доступные файлы (132):
!BaseCustomizer.exe
n2.jpg124kb.14.09.2011 15:06скачать
n5.doc1089kb.14.09.2011 15:06скачать
n6.htm328kb.14.09.2011 15:06скачать
n7.jpeg63kb.14.09.2011 15:06скачать
n8.exe
n9.ini
n10.mbd
n12.db
n13.exe
n14.inf
n15.ini
n16.jpeg48kb.14.09.2011 15:06скачать
n17.db
n19.mcd
n20.mcd
n21.mcd
n22.mcd
n23.mcd
n24.mcd
n25.mcd
n26.mcd
n27.mcd
n28.mcd
n29.mcd
n30.mcd
n31.mcd
n32.prn
n33.prn
n34.mcd
n35.mcd
n36.mcd
n37.mcd
n38.mcd
n39.mcd
n40.mcd
n41.mcd
n42.prn
n43.prn
n44.mcd
n45.mcd
n46.mcd
n47.mcd
n48.mcd
n49.mcd
n50.mcd
n51.mcd
n52.mcd
n53.mcd
n54.mcd
n55.mcd
n56.mcd
n57.prn
n58.prn
n59.mcd
n60.mcd
n61.mcd
n62.mcd
n63.mcd
n64.mcd
n65.mcd
n66.prn
n67.prn
n68.mcd
n69.mcd
n70.mcd
n71.mcd
n72.mcd
n73.mcd
n74.mcd
n75.mcd
n76.mcd
n77.prn
n78.prn
n79.prn
n80.mcd
n81.mcd
n82.mcd
n83.mcd
n84.mcd
n85.mcd
n86.mcd
n87.mcd
n88.mcd
n89.mcd
n90.prn
n91.prn
n92.mcd
n93.mcd
n94.mcd
n95.mcd
n96.mcd
n97.mcd
n98.mcd
n99.mcd
n100.mcd
n101.prn
n102.prn
n103.jpg22kb.14.09.2011 15:06скачать
n104.jpeg48kb.14.09.2011 15:06скачать
n106.htm138kb.14.09.2011 15:06скачать
n107.htm231kb.14.09.2011 15:06скачать
n108.htm386kb.14.09.2011 15:06скачать
n109.htm276kb.14.09.2011 15:06скачать
n110.htm189kb.14.09.2011 15:06скачать
n111.htm206kb.14.09.2011 15:06скачать
n112.htm94kb.14.09.2011 15:06скачать
n113.htm282kb.14.09.2011 15:06скачать
n114.htm209kb.14.09.2011 15:06скачать
n115.htm121kb.14.09.2011 15:06скачать
n116.htm97kb.14.09.2011 15:06скачать
n117.htm133kb.14.09.2011 15:06скачать
n118.htm265kb.14.09.2011 15:06скачать
n119.htm285kb.14.09.2011 15:06скачать
n120.htm236kb.14.09.2011 15:06скачать
n121.doc2344kb.14.09.2011 15:06скачать
n122.doc3719kb.14.09.2011 15:06скачать
n123.txt2kb.14.09.2011 15:06скачать
n124.jpg22kb.14.09.2011 15:06скачать
n125.jpeg48kb.14.09.2011 15:06скачать
n127.htm68kb.14.09.2011 15:06скачать
n128.htm71kb.14.09.2011 15:06скачать
n129.htm58kb.14.09.2011 15:06скачать
n130.htm186kb.14.09.2011 15:06скачать
n131.htm97kb.14.09.2011 15:06скачать
n132.htm47kb.14.09.2011 15:06скачать
n133.htm224kb.14.09.2011 15:06скачать
n134.htm61kb.14.09.2011 15:06скачать
n135.txt6kb.14.09.2011 15:06скачать
n136.ask
n137.csk
n138.ico

n114.htm


Тема 3.  ФИЛЬТРЫ СГЛАЖИВАНИЯ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

Не перестаю удивляться дерзкой гениальности Стефенсона и братьев Черепановых. Как они отважились построить паровоз, не располагая теорией его движения?

 Архив Кифы Васильевича. Наука и жизнь, 1984.

Пока нет теории, есть возможность войти в Историю. Бог прославился созданием Евы из ребра Адама без всякого теоретического обоснования. А когда теория есть, можно только влипнуть в какую-нибудь историю.

 Лариса Ратушная. Уральский геофизик, XX в.

 

Содержание

Введение.

1. Фильтры МНК 1-го порядка. Расчет коэффициентов фильтра. Импульсная реакция фильтра. Частотная характеристика фильтра. Модификация фильтра. Оптимизация сглаживания. 

2. Фильтры МНК 2-го порядка. Расчет фильтров. Частотные характеристики фильтров. Модификация фильтров.

3. Фильтры МНК 4-го порядка.

4. Расчет простого цифрового фильтра по частотной характеристике.

 

Введение

Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций, в отличие от численных методов анализа и математической статистики, где предпочтение отдается полиномам. В качестве периодических используются  гармонические функции синусов и косинусов. По-существу, спектральный состав сигналов – это тонкая внутренняя структура данных, которые несет сигнал, и которая практически скрыта в динамическом представлении данных даже для опытных обработчиков. Точно так же частотная характеристика цифрового фильтра – это его однозначный функциональный паспорт, полностью определяющий сущность преобразования фильтром входных данных. 

Следует отметить, что хотя цель фильтрации сигналов состоит именно в направленном изменении частотного состава данных, которые несет сигнал, у начинающих специалистов существует определенное эмоциональное противодействие частотному подходу и его роли в анализе данных. Преодолеть это противодействие можно только одним путем – на опыте убедиться в эффективности частотного подхода.

Рассмотрим пример частотного анализа фильтров при сглаживании данных методом наименьших квадратов (МНК).

3.1. фильтры мнк 1-го порядка  [24].

Предположим, что требуется осуществить сглаживание (регуляризацию, аппроксимацию) по методу наименьших квадратов (МНК) равномерного по аргументу массива данных.

Расчет коэффициентов фильтра. Простейший способ аппроксимации по МНК произвольной функции s(t) - с помощью полинома первой степени, т.е. функции вида y(t) = A+Bt (метод скользящих средних). Произведем расчет симметричного фильтра МНК на (2N+1) точек с окном от -N до N.

Для определения коэффициентов полинома найдем минимум функции приближения (функцию остаточных ошибок). С учетом дискретности данных по точкам tn = nDt и принимая Dt = 1, для симметричного НЦФ с нумерацией отсчетов по n от центра окна фильтра (в  системе координат фильтра), функция остаточных ошибок записывается в форме:

s(A,B) = [sn - (A+B·n)]2.

Дифференцируем функцию остаточных ошибок по аргументам А, В, и, приравнивая полученные уравнения нулю, формируем 2 нормальных уравнения:

(sn-(A+B·n)) ºsn - A1 - Bn = 0,

 (sn-(A+B·n))·n ºn×sn - An - Bn2 = 0,

С учетом очевидного равенства n = 0, результат решения данных уравнений относительно значений А и В:

А = sn ,    B =n×sn /n2.

Подставляем значения коэффициентов в уравнение аппроксимирующего полинома, переходим в систему координат по точкам k массива y(k+t) = A+B·t, где отсчет t производится от точки k массива, против которой находится точка n = 0 фильтра, и получаем в общей форме уравнение фильтра аппроксимации:

y(k+t) = sk-n + tn×sk-n /n2.

Для сглаживающего НЦФ вычисления производятся непосредственно для точки k в центре окна фильтра (t = 0), при этом:

yk = sk-n.                                            (3.1.1)

d02-01

Рис. 3.1.1.

Импульсная реакция фильтра соответственно определяется (2N+1) значениями коэффициентов bn = 1/(2N+1). Так, для 5-ти точечного НЦФ:

h(n) = {0.2, 0.2, 0.2, 0.2,  0.2}.

Передаточная функция фильтра в z-области:

H(z) = 0.2(z-2+z-1+1+z1+z2).

            Коэффициент усиления дисперсии шумов:

Kq = Sn h2(n) = 1/(2N+1),

т.е. обратно пропорционален ширине окна фильтра. Зависимость значения Kq от ширины окна приведена на рис. 3.1.1.

Частотная характеристика фильтра (передаточная функция фильтра в частотной области) находится преобразованием Фурье импульсной реакции h(n) (фильтр симметричный, начало координат в центре фильтра), или подстановкой z = exp(-jwDt) при Dt=1 в выражение передаточной функции H(z). И в том, и в другом случае получаем:

H(w) = 0.2[exp(2jw)+exp(jw)+1+exp(-jw)+exp(-2jw)].                 (3.1.2)

Можно использовать и непосредственно уравнение фильтра (3.1.1). Подадим на вход фильтра гармонический сигнал вида sk = exp(jwk). Так как сигнальная функция относится к числу собственных, на выходе фильтра будем иметь сигнал yk = H(w)exp(jwk). Подставляя выражения входного и выходного сигналов в уравнение (3.1.1), получаем:

H(w) exp(jwk) = 0.2exp(jw(k-n))= 0.2 exp(jwk) exp(-jwn).

Отсюда, выражение для передаточной функции:

H(w) = 0.2exp(-jwn) = 0.2[exp(2jw)+exp(jw)+1+exp(-jw)+exp(-2jw)],

что полностью идентично выражению (3.1.2).

Так как импульсная реакция фильтра МНК  симметрична (функция h(n) четная), частотное представление передаточной функции должно быть вещественным, в чем нетрудно убедиться, объединив комплексно сопряженные члены выражения (3.1.2):

H(w) = 0.2(1+2 cos w+2 cos 2w).

Альтернативное представление передаточной функции H(w) для фильтра с произвольным количеством коэффициентов 2N+1 нам достаточно хорошо известно, как нормированный фурье-образ прямоугольной функции, каковой по существу и является селектирующее окно фильтра (3.1.1):

H(w) = sin((N+1/2)w)/[(N+1/2)w] = sinc((N+1/2)w).                  (3.1.3)



Рис. 3.1.2. Сглаживающие фильтры МНК-1.

Графики передаточных функций (3.1.3) приведены на рисунке 3.1.2. По графикам можно видеть коэффициент передачи сигнала с входа на выход фильтра на любой частоте. Без ослабления (с коэффициентом передачи 1) сглаживающим фильтром пропускается (и должен пропускаться по физическому смыслу сглаживания данных) только сигнал постоянного уровня (нулевой частоты). Этим же определяется и тот фактор (который стоит запомнить), что сумма коэффициентов сглаживающего НЦФ всегда должна быть равна 1 (отсчет ненормированного дискретного фурье-преобразования на частоте w = 0 равен сумме значений входной функции).

Чем больше число коэффициентов фильтра (шире окно фильтра), тем уже полоса пропускания низких частот. Подавление высоких частот довольно неравномерное, с осцилляциями передаточной функции относительно нуля. На рис. 3.1.3 приведен пример фильтрации случайного сигнала (шума) фильтрами с различным размером окна.

d02-02

Рис. 3.1.3.  Фильтрация шумов фильтрами МНК 1-го порядка.

Модификация фильтра. Частотное представление передаточных функций позволяет наглядно видеть особенности фильтров и целенаправленно улучшать их характеристики. Так, если в рассмотренном нами фильтре с однородной импульсной реакцией hn = 1/(2N+1) уменьшить два крайних члена в 2 раза и заново нормировать к сумме S hn = 1, то частотные характеристики фильтра заметно улучшаются. Для нахождения передаточной функции модифицированного фильтра снимем в выражении (3.1.3) нормировку (умножим на 2N+1), вычтем значение 1/2 крайних членов (exp(-jwN)+exp(jwN))/2 = cos(wN) и заново пронормируем полученное выражение (разделим на 2N). Пример новой передаточной функции при N=3 также приведен на рисунке 3.1.2. Передаточные функции модифицированных таким образом фильтров приводятся к нулю на частоте Найквиста, при этом несколько расширяется полоса пропускания низких частот и уменьшается амплитуда осцилляций в области подавления высоких частот. Если смотреть на сглаживание, как на операцию подавления высокочастотных помех, то модифицированные фильтры без сомнения больше соответствует своему целевому назначению.

d02-04

Рис. 3.1.4.

Оптимизация сглаживания. При выборе окна фильтра следует учитывать как коэффициент подавления дисперсии шумов, так и степень искажения полезного сигнала, на который наложены шумы. Оптимальное окно фильтра может быть определено только в том случае, если спектр сигнала известен и ограничен определенной верхней частотой, а мощность шумов не превышает определенного уровня. Рассмотрим это на конкретном примере.

Допустим, что нужно обеспечить максимальное подавление дисперсии шумов при минимальном искажении верхней граничной частоты сигнала fв, при этом  мощность шумов равна мощности сигнальной гармоники fв. Допустим, значение fв равно 0.08 частоты Найквиста дискретизации данных, т.е. fв = 0.04 Гц при Dt=1. Относительные значения мощности гармоники и шума принимаем равными 1. Спектр модели сигнала плюс шума в сопоставлении с передаточными функциями фильтров приведен на рис. 3.1.4.

Таблица 3.1.1.

       N

0

1

2

3

4

5

6

7

Ку(fв)

1

0.98

0.94

0.88

0.8

0.7

0.6

0.51

Wu(N)

1

0.96

0.88

0.77

0.64

0.51

0.38

0.26

Wq(N)

1

0.33

0.2

0.14

0.11

0.09

0.08

0.07

Кс/ш(N)

1

2.88

4.4

5.4

5.8

5.6

4.89

3.85

d2(N)

1

0.35

0.23

0.18

0.17

0.18

0.21

0.26

s2(N)

1

0.32

0.2

0.15

0.15

0.18

0.23

0.31

По формуле (3.1.3) вычисляем коэффициенты Ку(fв) усиления фильтров с N от 0 до 6 на частоте fв (см. таблицу 3.1.1). При мощности гармоники Wu = 1 амплитудное значение гармоники на входе фильтра равно U = = 1.41. Мощности гармоник на выходе фильтров в зависимости от N:

d02-06

Рис. 3.1.5.

Wu(N)= 0.5·[U· Ку(fв)]2.

Соответственно, при мощности входного шума Wq=1 мощности шумов на выходе фильтров будут численно равны коэффициентам усиления дисперсии шумов Wq(N) = Wq·Kq(N).

Максимум отношения

Кс/ш(N) = Wu(N)/Wq(N)

определяет оптимальный фильтр с максимальным увеличением отношения сигнал/шум, т.е., по существу, коэффициент усиления отношения сигнал/шум при выполнении фильтрации с учетом изменения амплитудных значений полезной части сигнала.

d02-03

Рис. 3.1.6.

При Ку(fв) > 0.5 и Wu(N) = Wq(N) = 1 численные значения величины d2(N) = 1/ Кс/ш(N) в первом приближении могут служить оценкой s2(N) квадрата среднего квадратического отклонения выходных сигналов от "чистой" гармоники fв, заданной на входе. Свидетельством этому служат последние строки таблицы 3.1.1, где приведены результаты математического моделирования фильтрации по данным условиям на выборке 10000 точек. На рис. 3.1.6 приведены результаты сопоставления расчетных d2(N) и модельных s2(N) значений данных коэффициентов. Эффект фильтрации можно видеть на рис. 3.1.7, где приведен пример сигналов моделирования на ограниченном отрезке данных.

d02-05

Рис. 3.1.7. Сигналы на входе и выходе фильтра МНК 1-го порядка.

3.2. ФИЛЬТРЫ МНК 2-го ПОРЯДКА  [24].

Расчет фильтров. Фильтры МНК 2-го порядка (МНК-2) рассчитываются и анализируются аналогично. Рассмотрим квадратный многочлен вида y(t)=A+B·t+C·t2. Для упрощения анализа ограничимся симметричным сглаживающим НЦФ с интервалом дискретизации данных Dt=1.

Минимум суммы квадратов остаточных ошибок:

s(A,B,C) = [sn-(A+B·n+C·n2)]2.                              (3.2.1)

Система уравнений после дифференцирования выражения (3.2.1) по А, В, С и приравнивания полученных выражений нулю:

A1 + Bn + Сn2 =sn.

An + Bn2 + Сn3 =n·sn.

An2 + Bn3 + Сn4 =n2·sn.

При вычислении значения квадратного многочлена только для центральной точки (t=0) необходимости в значениях коэффициентов В и С не имеется. Решая систему уравнений относительно А, получаем:

A = {n4sn -n2n2sn} / {1n4 - [n2]2}.     (3.2.2)

При развертывании выражения (3.2.2) для 5-ти точечного НЦФ:

yo = (17sn - 5n2sn) /35 = (-3·s-2+12·s-1+17·so+12·s1-3·s2) /35.      (3.2.3)

Импульсная реакция:  hn = {(-3, 12, 17, 12, -3)/35}.

Передаточная функция фильтра:

H(z)= (-3z-2+12z-1+17+12z1-3z2)/35.                              (3.2.4)

Аналогичным образом выражение (3.2.2) позволяет получить импульсную реакцию для 7, 9, 11 и т.д. точек фильтра:

3hn = {(-2,3,6,7,6,3,-2)/21}.

4hn = {(-21,14,39,54,59,54,39,14,-21)/231}.

5hn={(-36,9,44,69,84,89,84,69,44,9,-21)/459}.

Частотные характеристики фильтров. Подставляя значение z = exp(-jw) в (3.2.4) или непосредственно в (3.2.3) сигнал sn = exp(jwn) и объединяя комплексно сопряженные члены, получаем частотную характеристику 5-ти точечного сглаживающего фильтра МНК второго порядка:

H(w) = (17+24 cos(w)-6 cos(2w))/35.



Рис. 3.2.1. Сглаживающие фильтры МНК-2.


Вывод  формул передаточных функций для 7, 9, 11-ти точечных фильтров МНК предлагается для самостоятельной работы.

d02-07        d02-08

Рис. 3.2.2.                                                          Рис. 3.2.3.

Вид частотных характеристик фильтров при N=3 и N=5 приводится на рис. 3.2.1. При сравнении характеристик с характеристиками фильтров МНК-1 можно видеть, что повышение степени полинома расширяет низкочастотную полосу пропускания фильтра и увеличивает крутизну ее среза. За счет расширения полосы пропускания главного частотного диапазона при тех же значениях N коэффициенты усиления дисперсии шумов фильтров МНК-2 выше, чем фильтров 1-го порядка, что можно видеть на рис. 3.2.2.

Методика выбора окна фильтра под частотные характеристики входных сигналов не отличается от фильтров МНК 1-го порядка. На рис. 3.2.3 приведены значения d2(N) и s2(N) фильтров МНК-2 в сопоставлении со значениями фильтров МНК-1 для частоты fв = 0.08 Гц при Dt=1. Из сопоставления видно, что для получения примерно равных значений подавления шумов фильтры МНК-2 должны иметь в 2 раза большую ширину окна, чем фильтры МНК-1. Об этом же свидетельствует и пример моделирования фильтрации, приведенный на рис. 3.2.4.

d02-9

Рис. 3.2.4.

Модификация фильтров. Фильтры МНК второго порядка (равно как и другие фильтры подобного назначения) также можно модифицировать по условию H(w) → 0 при w p. Один из простейших методов модификации заключается в следующем. В выражение передаточной функции (со всеми коэффициентами фильтра, вида (3.2.4)) подставляем z = exp(-jw), заменяем значения концевых коэффициентов фильтра на параметры, принимаем w = p, и, приравняв полученное выражение нулю, находим новые значения концевых коэффициентов, после чего сумму всех коэффициентов нормируем к 1 при w = 0.

  Пример модификации фильтра МНК 2-го порядка.

  Передаточная функция:  выражение (3.2.4).   Частотная характеристика (нормировку можно снять):

      H(w) = -3exp(2jw)+12exp(jw)+17+12exp(-jw)-3exp(-2jw).

  Замена концевых коэффициентов {значение 3} на параметр b и упрощение:

     H(w) = 17+24 cos(w)+2b cos(2w).

  При w = p:  H(p) = 17-24+2b = 0.  Отсюда:  b = 3.5

  Новая частотная характеристика (с приведением коэффициентов к целым числам):

      H(w) = 68+96 cos(w)+14 cos(2w).    Сумма коэффициентов при w = 0:  H(0) = 68+96+14 = 178.

  Нормированная частотная характеристика:    H(w) = (68+96 cos(w)+14 cos(2w))/178.

  Коэффициенты фильтра:  hn = {(7,48,68,48,7)/178}.

  Пример- задание:    Модифицировать 7, 9 и 11-ти точечные сглаживающие фильтры МНК 2-го порядка.

  Контроль:       7hn = {(1,6,12,14,12,6,1)/52}.  9hn = {(-1,28,78,108,118,108,78,28,-1)/548}.

                11h n = {(-11,18,88,138,168,178,168,138,88,18,-11)/980}.

Сравнительные графики частотных характеристик  модифицированных фильтров МНК второго порядка приведены на рисунке 3.2.1.

Фильтры МНК третьего порядка по своим частотным характеристикам эквивалентны фильтрам второго порядка.

3.3. ФИЛЬТРЫ МНК 4-го ПОРЯДКА  [24].

Фильтры МНК 4-го порядка. Расчет по аналогичной методике сглаживающих фильтров МНК 4-ой степени дает следующие результаты:

h0-3 = (131,75,-30,5)/231,

h0-4 = (179,135,30,-55,15)/429,

h0-5  = (143,120,60,-10,-45,18)/429.



Рис. 3.3.1. Сглаживающие фильтры МНК.

На рис. 3.3.1 приведено сопоставление частотных характеристик одноразмерных фильтров МНК 1-го, 2-го и 4-го порядка.

В целом, по сглаживающим фильтрам МНК можно сделать следующие выводы:

1. Повышение порядка фильтра увеличивает степень касания частотной характеристикой уровня коэффициента передачи Н=1 на частоте w = 0 и расширяет полосу пропускания фильтра.

2. Увеличение количества членов фильтра приводит к сужению полосы пропускания и увеличивает крутизну ее среза.

3. Модификация фильтров уменьшает осцилляции передаточной функции в полосе подавления сигналов.

Совместное изменение этих параметров позволяет подбирать для сглаживания данных такой фильтр МНК, частотная характеристика которого наилучшим образом удовлетворяет частотному спектру сигналов при минимальном количестве коэффициентов фильтра.

3.4. РАСЧЕТ ПРОСТОГО ФИЛЬТРА ПО ЧАСТОТНОЙ ХАРАКТЕРИСТИКЕ.

Если шумы в обрабатываемых сигналах сосредоточены в основном в высокочастотной области, то достаточно простые фильтры сглаживания без значительных осцилляций могут быть синтезированы непосредственно по частотной характеристике. В качестве примера проведем расчет простого симметричного сглаживающего НЦФ с окном в пять точек:

yk = ask-2+bsk-1+csk+bsk+1+ask+2.                                 (3.4.1)

Полагаем sk = exp(jwk), при этом yk = H(w) exp(jwk). Подставляем значения входного и выходного сигнала в уравнение фильтра, сокращаем левую и правую части на общий член exp(jwk) и, объединяя комплексно сопряженные члены в правой части, получаем уравнение передаточной функции:

H(w) = 2a cos(2w)+2b cos(w)+ c.

Сокращаем количество параметров функции заданием граничных условий по частоте. Как правило, имеет смысл принять:  H(0) = 1, H(p) = 0. Отсюда: 

H(0) = 2a+2b+c = 1,

H(p) = 2a-2b+c = 0.

B = 1/4,  c = 1/2-2a.

При этом функция H(w) превращается в однопараметровую:

H(w) = 2a(cos(2w)-1)+(cos(w)+1)/2.

По полученному выражению рекомендуется построить семейство кривых в параметрической зависимости от значений 'а' и выбрать фильтр, удовлетворяющий заданию. Пример семейства частотных характеристик приведен на рисунке 3.4.1.



Рис. 3.4.1. Частотные характеристики НЦФ.

Можно наложить еще одно дополнительное условие и определить все коэффициенты фильтра непосредственно. Так, например, если к двум граничным условиям задать третье условие сбалансированности: H(w) = 0.5 при w=p/2, то из трех полученных уравнений сразу же получим все три коэффициента фильтра: a = 0, b = 1/4, c = 1/2 (фильтр сокращается до трех точек).

В принципе, таким методом можно задать любую произвольную форму частотной характеристики симметричного НЦФ с произвольным количеством N точек дискретизации, что определит полное уравнение (3.4.1) с окном 2N+1 точка и соответствующую передаточную функцию фильтра, по которой можно составить и решить N+1 уравнение для определения коэффициентов фильтра.

литература

                24. Хемминг Р.В.  Цифровые фильтры. – М.: Недра, 1987. – 221 с. [kgl]

 

 

 

 

 

все лекции
содержание


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации